-
Notifications
You must be signed in to change notification settings - Fork 0
/
bwamem.c
539 lines (498 loc) · 17.3 KB
/
bwamem.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#ifdef HAVE_PTHREAD
#include <pthread.h>
#endif
#include "kstring.h"
#include "bwamem.h"
#include "bntseq.h"
#include "ksw.h"
#include "ksort.h"
void mem_fill_scmat(int a, int b, int8_t mat[25])
{
int i, j, k;
for (i = k = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
mat[k++] = i == j? a : -b;
mat[k++] = 0; // ambiguous base
}
for (j = 0; j < 5; ++j) mat[k++] = 0;
}
mem_opt_t *mem_opt_init()
{
mem_opt_t *o;
o = calloc(1, sizeof(mem_opt_t));
o->a = 1; o->b = 5; o->q = 8; o->r = 1; o->w = 100;
o->min_seed_len = 17;
o->max_occ = 10;
o->max_chain_gap = 10000;
o->mask_level = 0.50;
o->chain_drop_ratio = 0.50;
o->chunk_size = 10000000;
o->n_threads = 1;
o->pe_dir = 0<<1|1;
o->is_pe = 0;
mem_fill_scmat(o->a, o->b, o->mat);
return o;
}
/***************************
* SMEM iterator interface *
***************************/
struct __smem_i {
const bwt_t *bwt;
const uint8_t *query;
int start, len;
bwtintv_v *matches; // matches; to be returned by smem_next()
bwtintv_v *sub; // sub-matches inside the longest match; temporary
bwtintv_v *tmpvec[2]; // temporary arrays
};
smem_i *smem_itr_init(const bwt_t *bwt)
{
smem_i *itr;
itr = calloc(1, sizeof(smem_i));
itr->bwt = bwt;
itr->tmpvec[0] = calloc(1, sizeof(bwtintv_v));
itr->tmpvec[1] = calloc(1, sizeof(bwtintv_v));
itr->matches = calloc(1, sizeof(bwtintv_v));
itr->sub = calloc(1, sizeof(bwtintv_v));
return itr;
}
void smem_itr_destroy(smem_i *itr)
{
free(itr->tmpvec[0]->a); free(itr->tmpvec[0]);
free(itr->tmpvec[1]->a); free(itr->tmpvec[1]);
free(itr->matches->a); free(itr->matches);
free(itr->sub->a); free(itr->sub);
free(itr);
}
void smem_set_query(smem_i *itr, int len, const uint8_t *query)
{
itr->query = query;
itr->start = 0;
itr->len = len;
}
const bwtintv_v *smem_next(smem_i *itr, int split_len)
{
int i, max, max_i;
itr->tmpvec[0]->n = itr->tmpvec[1]->n = itr->matches->n = itr->sub->n = 0;
if (itr->start >= itr->len || itr->start < 0) return 0;
while (itr->start < itr->len && itr->query[itr->start] > 3) ++itr->start; // skip ambiguous bases
if (itr->start == itr->len) return 0;
itr->start = bwt_smem1(itr->bwt, itr->len, itr->query, itr->start, 1, itr->matches, itr->tmpvec); // search for SMEM
if (itr->matches->n == 0) return itr->matches; // well, in theory, we should never come here
for (i = max = 0, max_i = 0; i < itr->matches->n; ++i) { // look for the longest match
bwtintv_t *p = &itr->matches->a[i];
int len = (uint32_t)p->info - (p->info>>32);
if (max < len) max = len, max_i = i;
}
if (split_len > 0 && max >= split_len && itr->matches->a[max_i].x[2] == 1) { // if the longest SMEM is unique and long
int j;
bwtintv_v *a = itr->tmpvec[0]; // reuse tmpvec[0] for merging
bwtintv_t *p = &itr->matches->a[max_i];
bwt_smem1(itr->bwt, itr->len, itr->query, ((uint32_t)p->info + (p->info>>32))>>1, 2, itr->sub, itr->tmpvec); // starting from the middle of the longest MEM
i = j = 0; a->n = 0;
while (i < itr->matches->n && j < itr->sub->n) { // ordered merge
int64_t xi = itr->matches->a[i].info>>32<<32 | (itr->len - (uint32_t)itr->matches->a[i].info);
int64_t xj = itr->sub->a[j].info>>32<<32 | (itr->len - (uint32_t)itr->sub->a[j].info);
if (xi < xj) {
kv_push(bwtintv_t, *a, itr->matches->a[i]);
++i;
} else {
kv_push(bwtintv_t, *a, itr->sub->a[j]);
++j;
}
}
for (; i < itr->matches->n; ++i) kv_push(bwtintv_t, *a, itr->matches->a[i]);
for (; j < itr->sub->n; ++j) kv_push(bwtintv_t, *a, itr->sub->a[j]);
kv_copy(bwtintv_t, *itr->matches, *a);
}
return itr->matches;
}
/********************************
* Chaining while finding SMEMs *
********************************/
#include "kbtree.h"
#define chain_cmp(a, b) ((a).pos - (b).pos)
KBTREE_INIT(chn, mem_chain_t, chain_cmp)
static int test_and_merge(const mem_opt_t *opt, mem_chain_t *c, const mem_seed_t *p)
{
int64_t qend, rend, x, y;
const mem_seed_t *last = &c->seeds[c->n-1];
qend = last->qbeg + last->len;
rend = last->rbeg + last->len;
if (p->qbeg >= c->seeds[0].qbeg && p->qbeg + p->len <= qend && p->rbeg >= c->seeds[0].rbeg && p->rbeg + p->len <= rend)
return 1; // contained seed; do nothing
x = p->qbeg - last->qbeg; // always non-negtive
y = p->rbeg - last->rbeg;
if (y >= 0 && x - y <= opt->w && y - x <= opt->w && x - last->len < opt->max_chain_gap && y - last->len < opt->max_chain_gap) { // grow the chain
if (c->n == c->m) {
c->m <<= 1;
c->seeds = realloc(c->seeds, c->m * sizeof(mem_seed_t));
}
c->seeds[c->n++] = *p;
return 1;
}
return 0; // request to add a new chain
}
static void mem_insert_seed(const mem_opt_t *opt, kbtree_t(chn) *tree, smem_i *itr)
{
const bwtintv_v *a;
while ((a = smem_next(itr, opt->min_seed_len<<1)) != 0) { // to find all SMEM and some internal MEM
int i;
for (i = 0; i < a->n; ++i) { // go through each SMEM/MEM up to itr->start
bwtintv_t *p = &a->a[i];
int slen = (uint32_t)p->info - (p->info>>32); // seed length
int64_t k;
if (slen < opt->min_seed_len || p->x[2] > opt->max_occ) continue; // ignore if too short or too repetitive
for (k = 0; k < p->x[2]; ++k) {
mem_chain_t tmp, *lower, *upper;
mem_seed_t s;
int to_add = 0;
s.rbeg = tmp.pos = bwt_sa(itr->bwt, p->x[0] + k); // this is the base coordinate in the forward-reverse reference
s.qbeg = p->info>>32;
s.len = slen;
if (kb_size(tree)) {
kb_intervalp(chn, tree, &tmp, &lower, &upper); // find the closest chain
if (!lower || !test_and_merge(opt, lower, &s)) to_add = 1;
} else to_add = 1;
if (to_add) { // add the seed as a new chain
tmp.n = 1; tmp.m = 4;
tmp.seeds = calloc(tmp.m, sizeof(mem_seed_t));
tmp.seeds[0] = s;
kb_putp(chn, tree, &tmp);
}
}
}
}
}
mem_chain_v mem_chain(const mem_opt_t *opt, const bwt_t *bwt, int len, const uint8_t *seq)
{
mem_chain_v chain;
smem_i *itr;
kbtree_t(chn) *tree;
kv_init(chain);
if (len < opt->min_seed_len) return chain; // if the query is shorter than the seed length, no match
tree = kb_init(chn, KB_DEFAULT_SIZE);
itr = smem_itr_init(bwt);
smem_set_query(itr, len, seq);
mem_insert_seed(opt, tree, itr);
kv_resize(mem_chain_t, chain, kb_size(tree));
#define traverse_func(p_) (chain.a[chain.n++] = *(p_))
__kb_traverse(mem_chain_t, tree, traverse_func);
#undef traverse_func
smem_itr_destroy(itr);
kb_destroy(chn, tree);
return chain;
}
/********************
* Filtering chains *
********************/
typedef struct {
int beg, end, w;
void *p, *p2;
} flt_aux_t;
#define flt_lt(a, b) ((a).w > (b).w)
KSORT_INIT(mem_flt, flt_aux_t, flt_lt)
int mem_chain_flt(const mem_opt_t *opt, int n_chn, mem_chain_t *chains)
{
flt_aux_t *a;
int i, j, n;
if (n_chn <= 1) return n_chn; // no need to filter
a = malloc(sizeof(flt_aux_t) * n_chn);
for (i = 0; i < n_chn; ++i) {
mem_chain_t *c = &chains[i];
int w = 0;
for (j = 0; j < c->n; ++j) w += c->seeds[j].len; // FIXME: take care of seed overlaps
a[i].beg = c->seeds[0].qbeg;
a[i].end = c->seeds[c->n-1].qbeg + c->seeds[c->n-1].len;
a[i].w = w; a[i].p = c; a[i].p2 = 0;
}
ks_introsort(mem_flt, n_chn, a);
{ // reorder chains such that the best chain appears first
mem_chain_t *swap;
swap = malloc(sizeof(mem_chain_t) * n_chn);
for (i = 0; i < n_chn; ++i) {
swap[i] = *((mem_chain_t*)a[i].p);
a[i].p = &chains[i]; // as we will memcpy() below, a[i].p is changed
}
memcpy(chains, swap, sizeof(mem_chain_t) * n_chn);
free(swap);
}
for (i = 1, n = 1; i < n_chn; ++i) {
for (j = 0; j < n; ++j) {
int b_max = a[j].beg > a[i].beg? a[j].beg : a[i].beg;
int e_min = a[j].end < a[i].end? a[j].end : a[i].end;
if (e_min > b_max) { // have overlap
int min_l = a[i].end - a[i].beg < a[j].end - a[j].beg? a[i].end - a[i].beg : a[j].end - a[j].beg;
if (e_min - b_max >= min_l * opt->mask_level) { // significant overlap
if (a[j].p2 == 0) a[j].p2 = a[i].p;
if (a[i].w < a[j].w * opt->chain_drop_ratio)
break;
}
}
}
if (j == n) a[n++] = a[i]; // if have no significant overlap with better chains, keep it.
}
for (i = 0; i < n; ++i) { // mark chains to be kept
mem_chain_t *c = (mem_chain_t*)a[i].p;
if (c->n > 0) c->n = -c->n;
c = (mem_chain_t*)a[i].p2;
if (c && c->n > 0) c->n = -c->n;
}
free(a);
for (i = 0; i < n_chn; ++i) { // free discarded chains
mem_chain_t *c = &chains[i];
if (c->n >= 0) {
free(c->seeds);
c->n = c->m = 0;
} else c->n = -c->n;
}
for (i = n = 0; i < n_chn; ++i) { // squeeze out discarded chains
if (chains[i].n > 0) {
if (n != i) chains[n++] = chains[i];
else ++n;
}
}
return n;
}
#define alnreg_lt(a, b) ((a).score > (b).score)
KSORT_INIT(mem_ar, mem_alnreg_t, alnreg_lt)
int mem_choose_alnreg_se(const mem_opt_t *opt, int n, mem_alnreg_t *a)
{ // similar to the loop in mem_chain_flt()
int i, j, m;
if (n <= 1) return n;
ks_introsort(mem_ar, n, a);
for (i = 0; i < n; ++i) a[i].sub = 0;
for (i = 1, m = 1; i < n; ++i) {
for (j = 0; j < m; ++j) {
int b_max = a[j].qb > a[i].qb? a[j].qb : a[i].qb;
int e_min = a[j].qe < a[i].qe? a[j].qe : a[i].qe;
if (e_min > b_max) { // have overlap
int min_l = a[i].qe - a[i].qb < a[j].qe - a[j].qb? a[i].qe - a[i].qb : a[j].qe - a[j].qb;
if (e_min - b_max >= min_l * opt->mask_level) { // significant overlap
if (a[j].sub == 0) a[j].sub = a[i].score;
break;
}
}
}
if (j == m) a[m++] = a[i];
}
return m;
}
/****************************************
* Construct the alignment from a chain *
****************************************/
static inline int cal_max_gap(const mem_opt_t *opt, int qlen)
{
int l = (int)((double)(qlen * opt->a - opt->q) / opt->r + 1.);
return l > 1? l : 1;
}
void mem_chain2aln(const mem_opt_t *opt, int64_t l_pac, const uint8_t *pac, int l_query, const uint8_t *query, const mem_chain_t *c, mem_alnreg_t *a)
{ // FIXME: in general, we SHOULD check funny seed patterns such as contained seeds. When that happens, we should use a SW or extend more seeds
int i, j, qbeg;
int64_t rlen, rbeg, rmax[2], tmp;
const mem_seed_t *s;
uint8_t *rseq = 0;
memset(a, 0, sizeof(mem_alnreg_t));
// get the start and end of the seeded region
rbeg = c->seeds[0].rbeg; qbeg = c->seeds[0].qbeg;
// get the max possible span
rmax[0] = l_pac<<1; rmax[1] = 0;
for (i = 0; i < c->n; ++i) {
int64_t b, e;
const mem_seed_t *t = &c->seeds[i];
b = t->rbeg - (t->qbeg + cal_max_gap(opt, t->qbeg));
e = t->rbeg + t->len + ((l_query - t->qbeg - t->len) + cal_max_gap(opt, l_query - t->qbeg - t->len));
rmax[0] = rmax[0] < b? rmax[0] : b;
rmax[1] = rmax[1] > e? rmax[1] : e;
}
// retrieve the reference sequence
rseq = bns_get_seq(l_pac, pac, rmax[0], rmax[1], &rlen);
if (qbeg) { // left extension of the first seed
uint8_t *rs, *qs;
int qle, tle;
qs = malloc(qbeg);
for (i = 0; i < qbeg; ++i) qs[i] = query[qbeg - 1 - i];
tmp = rbeg - rmax[0];
rs = malloc(tmp);
for (i = 0; i < tmp; ++i) rs[i] = rseq[tmp - 1 - i];
a->score = ksw_extend(qbeg, qs, tmp, rs, 5, opt->mat, opt->q, opt->r, opt->w, c->seeds[0].len * opt->a, 0, &qle, &tle);
a->qb = qbeg - qle; a->rb = rbeg - tle;
free(qs); free(rs);
} else a->score = c->seeds[0].len * opt->a, a->qb = 0, a->rb = rbeg;
s = &c->seeds[0];
if (s->qbeg + s->len != l_query) { // right extension of the first seed
int qle, tle, qe, re;
int16_t *qw = 0;
qe = s->qbeg + s->len; re = s->rbeg + s->len - rmax[0];
if (c->n > 1) { // generate $qw
int l = rmax[1] - (s->rbeg + s->len);
qw = malloc(l * 2);
for (i = 0; i < l; ++i) qw[i] = -1; // no constraint by default
for (i = 1; i < c->n; ++i) {
const mem_seed_t *t = &c->seeds[i];
for (j = 0; j < t->len; ++j) {
int x = t->rbeg + j - (s->rbeg + s->len), y = t->qbeg + j - (s->qbeg + s->len);
if (x < 0) continue; // overlap with the first seed
if (qw[x] == -1) qw[x] = x > y? x - y : y - x;
else if (qw[x] >= 0) qw[x] = -2; // in a seed overlap, do not set any constraint
}
}
}
//printf("[Q] "); for (i = qe; i < l_query; ++i) putchar("ACGTN"[(int)query[i]]); putchar('\n');
//printf("[R] "); for (i = re; i < rmax[1] - rmax[0]; ++i) putchar("ACGTN"[(int)rseq[i]]); putchar('\n');
a->score = ksw_extend(l_query - qe, query + qe, rmax[1] - rmax[0] - re, rseq + re, 5, opt->mat, opt->q, opt->r, opt->w, a->score, qw, &qle, &tle);
a->qe = qe + qle; a->re = rmax[0] + re + tle;
free(qw);
} else a->qe = l_query, a->re = s->rbeg + s->len;
/*
a->is_all = 1;
if (c->n > 1) { // check if all the seeds have been included
s = &c->seeds[c->n - 1];
if (s->qbeg + s->len > a->qe) a->is_all = 0;
}
*/
printf("[%d] score=%d\t[%d,%d) <=> [%lld,%lld)\n", c->n, a->score, a->qb, a->qe, a->rb, a->re);
free(rseq);
}
uint32_t *mem_gen_cigar(const mem_opt_t *opt, int64_t l_pac, const uint8_t *pac, int l_query, uint8_t *query, int64_t rb, int64_t re, int *score, int *n_cigar)
{
uint32_t *cigar = 0;
uint8_t tmp, *rseq;
int i, w;
int64_t rlen;
*n_cigar = 0;
if (l_query <= 0 || rb >= re || (rb < l_pac && re > l_pac)) return 0; // reject if negative length or bridging the forward and reverse strand
rseq = bns_get_seq(l_pac, pac, rb, re, &rlen);
if (re - rb != rlen) goto ret_gen_cigar; // possible if out of range
if (rb >= l_pac) { // then reverse both query and rseq; this is to ensure indels to be placed at the leftmost position
for (i = 0; i < l_query>>1; ++i)
tmp = query[i], query[i] = query[l_query - 1 - i], query[l_query - 1 - i] = tmp;
for (i = 0; i < rlen>>1; ++i)
tmp = rseq[i], rseq[i] = rseq[rlen - 1 - i], query[rlen - 1 - i] = tmp;
}
// set the band-width
w = (int)((double)(l_query * opt->a - opt->q) / opt->r + 1.);
w = w < 1? w : 1;
w = w < opt->w? w : opt->w;
w += abs(rlen - l_query);
// NW alignment
*score = ksw_global(l_query, query, rlen, rseq, 5, opt->mat, opt->q, opt->r, w, n_cigar, &cigar);
if (rb >= l_pac) // reverse back query
for (i = 0; i < l_query>>1; ++i)
tmp = query[i], query[i] = query[l_query - 1 - i], query[l_query - 1 - i] = tmp;
ret_gen_cigar:
free(rseq);
return cigar;
}
/************************
* Integrated interface *
************************/
void mem_sam_se(const mem_opt_t *opt, const bntseq_t *bns, const uint8_t *pac, bseq1_t *s, mem_alnreg_v *a)
{
int k, n_cigar = 0, score, is_rev, nn, rid, i;
uint32_t *cigar = 0;
int64_t pos;
kstring_t str;
mem_alnreg_t *p;
str.l = str.m = 0; str.s = 0;
k = mem_choose_alnreg_se(opt, a->n, a->a);
p = &a->a[k];
cigar = mem_gen_cigar(opt, bns->l_pac, pac, p->qe - p->qb, (uint8_t*)&s->seq[p->qb], p->rb, p->re, &score, &n_cigar);
pos = bns_depos(bns, p->rb, &is_rev);
nn = bns_cnt_ambi(bns, pos, p->re - p->rb, &rid);
kputs(s->name, &str); kputc('\t', &str); kputw(is_rev? 16 : 0, &str); kputc('\t', &str);
kputs(bns->anns[rid].name, &str); kputc('\t', &str); kputuw(pos - bns->anns[rid].offset, &str); kputc('\t', &str);
kputw(0, &str); kputc('\t', &str);
for (i = 0; i < s->l_seq; ++i) s->seq[i] = "ACGTN"[(int)s->seq[i]];
kputsn(s->seq, s->l_seq, &str); kputc('\t', &str);
if (s->qual) kputsn(s->qual, s->l_seq, &str);
free(cigar);
s->sam = str.s;
}
static mem_alnreg_v find_alnreg(const mem_opt_t *opt, const bwt_t *bwt, const bntseq_t *bns, const uint8_t *pac, bseq1_t *s)
{
int i;
mem_chain_v chn;
mem_alnreg_v regs;
for (i = 0; i < s->l_seq; ++i)
s->seq[i] = nst_nt4_table[(int)s->seq[i]];
chn = mem_chain(opt, bwt, s->l_seq, (uint8_t*)s->seq);
chn.n = mem_chain_flt(opt, chn.n, chn.a);
regs.n = regs.m = chn.n;
regs.a = malloc(regs.n * sizeof(mem_alnreg_t));
for (i = 0; i < chn.n; ++i) {
mem_chain2aln(opt, bns->l_pac, pac, s->l_seq, (uint8_t*)s->seq, &chn.a[i], ®s.a[i]);
free(chn.a[i].seeds);
}
free(chn.a);
return regs;
}
typedef struct {
int start, step, n;
const mem_opt_t *opt;
const bwt_t *bwt;
const bntseq_t *bns;
const uint8_t *pac;
bseq1_t *seqs;
mem_alnreg_v *regs;
} worker_t;
static void *worker1(void *data)
{
worker_t *w = (worker_t*)data;
int i;
for (i = w->start; i < w->n; i += w->step)
w->regs[i] = find_alnreg(w->opt, w->bwt, w->bns, w->pac, &w->seqs[i]);
return 0;
}
static void *worker2(void *data)
{
worker_t *w = (worker_t*)data;
int i;
if (!w->opt->is_pe) {
for (i = 0; i < w->n; i += w->step) {
mem_sam_se(w->opt, w->bns, w->pac, &w->seqs[i], &w->regs[i]);
free(w->regs[i].a);
}
} else {
for (i = 0; i < w->n>>1; i += w->step) { // not implemented yet
free(w->regs[i<<1|0].a); free(w->regs[i<<1|1].a);
}
}
return 0;
}
int mem_process_seqs(const mem_opt_t *opt, const bwt_t *bwt, const bntseq_t *bns, const uint8_t *pac, int n, bseq1_t *seqs)
{
int i;
worker_t *w;
w = calloc(opt->n_threads, sizeof(worker_t));
for (i = 0; i < opt->n_threads; ++i) {
worker_t *w = &w[i];
w->start = i; w->step = opt->n_threads; w->n = n;
w->opt = opt; w->bwt = bwt; w->bns = bns; w->pac = pac;
w->seqs = seqs;
}
#ifdef HAVE_PTHREAD
if (opt->n_threads == 1) {
worker1(w); worker2(w);
} else {
pthread_t *tid;
tid = (pthread_t*)calloc(opt->n_threads, sizeof(pthread_t));
for (i = 0; i < opt->n_threads; ++i) pthread_create(&tid[i], 0, worker1, &w[i]);
for (i = 0; i < opt->n_threads; ++i) pthread_join(tid[i], 0);
for (i = 0; i < opt->n_threads; ++i) pthread_create(&tid[i], 0, worker2, &w[i]);
for (i = 0; i < opt->n_threads; ++i) pthread_join(tid[i], 0);
free(tid);
}
#else
worker1(w); worker2(w);
#endif
for (i = 0; i < n; ++i) {
puts(seqs[i].sam);
free(seqs[i].name); free(seqs[i].comment); free(seqs[i].seq); free(seqs[i].qual); free(seqs[i].sam);
}
free(w);
return 0;
}