forked from OPTML-Group/Unlearn-Sparse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lmdb_dataset.py
128 lines (100 loc) · 3.22 KB
/
lmdb_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import os.path as osp
import pickle
import lmdb
import numpy as np
import six
import torch.utils.data as data
from PIL import Image
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
def loads_data(buf):
"""
Args:
buf: the output of `dumps`.
"""
return pickle.loads(buf)
class ImageFolderLMDB(data.Dataset):
def __init__(self, db_path, transform=None, target_transform=None):
self.db_path = db_path
self.env = lmdb.open(
db_path,
subdir=osp.isdir(db_path),
readonly=True,
lock=False,
readahead=False,
meminit=False,
)
with self.env.begin(write=False) as txn:
self.length = loads_data(txn.get(b"__len__"))
self.keys = loads_data(txn.get(b"__keys__"))
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index):
env = self.env
with env.begin(write=False) as txn:
byteflow = txn.get(self.keys[index])
unpacked = loads_data(byteflow)
# load img
imgbuf = unpacked[0]
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
img = Image.open(buf).convert("RGB")
# load label
target = unpacked[1]
if self.transform is not None:
img = self.transform(img)
im2arr = np.array(img)
if self.target_transform is not None:
target = self.target_transform(target)
# return img, target
return im2arr, target
def __len__(self):
return self.length
def __repr__(self):
return self.__class__.__name__ + " (" + self.db_path + ")"
def raw_reader(path):
with open(path, "rb") as f:
bin_data = f.read()
return bin_data
def dumps_data(obj):
"""
Serialize an object.
Returns:
Implementation-dependent bytes-like object
"""
return pickle.dumps(obj)
def folder2lmdb(dpath, name="train", write_frequency=5000):
directory = osp.expanduser(osp.join(dpath, name))
print("Loading dataset from %s" % directory)
dataset = ImageFolder(directory, loader=raw_reader)
data_loader = DataLoader(dataset, num_workers=16, collate_fn=lambda x: x)
lmdb_path = osp.join(dpath, "%s.lmdb" % name)
isdir = os.path.isdir(lmdb_path)
print("Generate LMDB to %s" % lmdb_path)
db = lmdb.open(
lmdb_path,
subdir=isdir,
map_size=1099511627776 * 2,
readonly=False,
meminit=False,
map_async=True,
)
txn = db.begin(write=True)
for idx, data in enumerate(data_loader):
image, label = data[0]
txn.put("{}".format(idx).encode("ascii"), dumps_data((image, label)))
if idx % write_frequency == 0:
print("[%d/%d]" % (idx, len(data_loader)))
txn.commit()
txn = db.begin(write=True)
# finish iterating through dataset
txn.commit()
keys = ["{}".format(k).encode("ascii") for k in range(idx + 1)]
with db.begin(write=True) as txn:
txn.put(b"__keys__", dumps_data(keys))
txn.put(b"__len__", dumps_data(len(keys)))
print("Flushing database ...")
db.sync()
db.close()