You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
*[Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Piece-wise%20Linear%20Models%20from%20Large%20Scale%20Data%20for%20Ad%20Click%20Prediction.pdf) <br />
37
37
阿里提出的Large Scale Piece-wise Linear Model (LS-PLM) CTR预估模型
38
+
*[[GBDT+LR]Practical Lessons from Predicting Clicks on Ads at Facebook.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BGBDT%2BLR%5DPractical%20Lessons%20from%20Predicting%20Clicks%20on%20Ads%20at%20Facebook.pdf) <br />
38
39
*[[FNN]Deep Learning over Multi-field Categorical Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BFNN%5DDeep%20Learning%20over%20Multi-field%20Categorical%20Data.pdf) <br />
39
40
*[Entire Space Multi-Task Model_ An Effective Approach for Estimating Post-Click Conversion Rate.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Entire%20Space%20Multi-Task%20Model_%20An%20Effective%20Approach%20for%20Estimating%20Post-Click%20Conversion%20Rate.pdf) <br />
40
41
*[Deep Interest Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br />
41
-
*[Product-based Neural Networks for User Response Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Product-based%20Neural%20Networks%20for%20User%20Response%20Prediction.pdf) <br />
*[Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Bid-aware%20Gradient%20Descent%20for%20Unbiased%20Learning%20with%20Censored%20Data%20in%20Display%20Advertising.pdf) <br />
*[[Multi-Task]An Overview of Multi-Task Learning in Deep Neural Networks.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BMulti-Task%5DAn%20Overview%20of%20Multi-Task%20Learning%20in%20Deep%20Neural%20Networks.pdf) <br />
45
45
*[Ad Click Prediction a View from the Trenches.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Ad%20Click%20Prediction%20a%20View%20from%20the%20Trenches.pdf) <br />
46
46
Google大名鼎鼎的用FTRL解决CTR在线预估的工程文章,非常经典。
47
+
*[[PNN]Product-based Neural Networks for User Response Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BPNN%5DProduct-based%20Neural%20Networks%20for%20User%20Response%20Prediction.pdf) <br />
47
48
*[Image Matters- Visually modeling user behaviors using Advanced Model Server.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Image%20Matters-%20Visually%20modeling%20user%20behaviors%20using%20Advanced%20Model%20Server.pdf) <br />
48
49
阿里提出引入商品图像特征的(Deep Image CTR Model)CTR预估模型,并介绍其分布式机器学习框架 Advanced Model Server (AMS)
50
+
*[[Wide & Deep]Wide & Deep Learning for Recommender Systems.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BWide%20%26%20Deep%5DWide%20%26%20Deep%20Learning%20for%20Recommender%20Systems.pdf) <br />
49
51
*[[DeepFM]- A Factorization-Machine based Neural Network for CTR Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BDeepFM%5D-%20A%20Factorization-Machine%20based%20Neural%20Network%20for%20CTR%20Prediction.pdf) <br />
50
52
*[Logistic Regression in Rare Events Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Logistic%20Regression%20in%20Rare%20Events%20Data.pdf) <br />
51
53
样本稀少情况下的LR模型训练,讲的比较细
52
54
*[Deep & Cross Network for Ad Click Predictions.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20%26%20Cross%20Network%20for%20Ad%20Click%20Predictions.pdf) <br />
53
55
Google 在17年发表的 Deep&Cross 网络,类似于 Wide&Deep, 比起 PNN 只做了特征二阶交叉,Deep&Cross 理论上能够做任意高阶的特征交叉
54
-
*[An Overview of Multi-Task Learning in Deep Neural Networks.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/An%20Overview%20of%20Multi-Task%20Learning%20in%20Deep%20Neural%20Networks.pdf) <br />
55
56
*[Learning Deep Structured Semantic Models for Web Search using Clickthrough Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Deep%20Structured%20Semantic%20Models%20for%20Web%20Search%20using%20Clickthrough%20Data.pdf) <br />
56
-
*[Wide & Deep Learning for Recommender Systems.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Wide%20%26%20Deep%20Learning%20for%20Recommender%20Systems.pdf) <br />
57
-
Google 的 Wide & Deep 模型,论文将模型用于推荐系统中,但也可用于 CTR 预估中
58
57
*[Adaptive Targeting for Online Advertisement.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Adaptive%20Targeting%20for%20Online%20Advertisement.pdf) <br />
59
58
一篇比较简单但是全面的CTR预估的文章,有一定实用性
60
-
*[Practical Lessons from Predicting Clicks on Ads at Facebook.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Practical%20Lessons%20from%20Predicting%20Clicks%20on%20Ads%20at%20Facebook.pdf) <br />
61
-
Facebook的一篇非常出名的文章,GBDT+LR/FM解决CTR预估问题,工程性很强
62
59
63
60
### Topic Model
64
61
话题模型相关文章,PLSA,LDA,进行广告Context特征提取,创意优化经常会用到Topic Model
0 commit comments