-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathmodel_helper.py
270 lines (218 loc) · 9.77 KB
/
model_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
''' Details
Author: Zhipeng Zhang ([email protected])
Function: load and save models / check trainable parameters
Data: 2021.6.23
'''
import os
import glob
import math
import torch
import torch.nn as nn
from os import makedirs
from copy import deepcopy
from os.path import join, exists
from loguru import logger
from utils.general_helper import is_parallel
class ModelEMA:
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
Keep a moving average of everything in the model state_dict (parameters and buffers).
This is intended to allow functionality like
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
A smoothed version of the weights is necessary for some training schemes to perform well.
This class is sensitive where it is initialized in the sequence of model init,
GPU assignment and distributed training wrappers.
"""
def __init__(self, model, decay=0.9999, updates=0):
# Create EMA
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
# if next(model.parameters()).device.type != 'cpu':
# self.ema.half() # FP16 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
for p in self.ema.parameters():
p.requires_grad_(False)
def update(self, model):
# Update EMA parameters
with torch.no_grad():
self.updates += 1
d = self.decay(self.updates)
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point:
v *= d
v += (1. - d) * msd[k].detach()
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
# Update EMA attributes
copy_attr(self.ema, model, include, exclude)
def copy_attr(a, b, include=(), exclude=()):
# Copy attributes from b to a, options to only include [...] and to exclude [...]
for k, v in b.__dict__.items():
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
continue
else:
setattr(a, k, v)
def get_latest_run(search_dir='./snapshot'):
"""
get the latest saved ckpt (used for resume)
:param search_dir:
:return:
"""
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
return max(last_list, key=os.path.getctime)
def model_info(model, verbose=False):
# Plots a line-by-line description of a PyTorch model
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
if verbose:
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
try: # FLOPS
from thop import profile
flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, 64, 64),), verbose=False)[0] / 1E9 * 2
fs = ', %.1f GFLOPS' % (flops * 100) # 640x640 FLOPS
except:
fs = ''
logger.info('Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs))
def initialize_weights(model):
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
m.inplace = True
def select_device(device='', batch_size=None):
# device = 'cpu' or '0' or '0,1,2,3'
cpu_request = device.lower() == 'cpu'
if device and not cpu_request: # if device requested other than 'cpu'
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
cuda = False if cpu_request else torch.cuda.is_available()
if cuda:
c = 1024 ** 2 # bytes to MB
ng = torch.cuda.device_count()
if ng > 1 and batch_size: # check that batch_size is compatible with device_count
assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
x = [torch.cuda.get_device_properties(i) for i in range(ng)]
s = 'Using CUDA '
for i in range(0, ng):
if i == 1:
s = ' ' * len(s)
logger.info("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
(s, i, x[i].name, x[i].total_memory / c))
else:
logger.info('Using CPU')
logger.info('') # skip a line
return torch.device('cuda:0' if cuda else 'cpu')
def remove_prefix(state_dict, prefix):
'''
Old style model is stored with all names of parameters share common prefix 'module.'
'''
print('remove prefix \'{}\''.format(prefix))
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
return {f(key): value for key, value in state_dict.items()}
def change_f2b(state_dict):
'''
Old style model is stored with 'features.features', change it to 'backbone'
'''
print('change features.features to backbone')
f = lambda x: x.replace('features.features', 'backbone') if 'features.features' in x else x
return {f(key): value for key, value in state_dict.items()}
def addhead_clsreg(state_dict):
'''
'head.'+'classification'/'regression' for old style AutoMatch pretrained model
'''
f = lambda x: 'head.'+x if ('regression' in x or 'classification' in x) and 'head' not in x else x
return {f(key): value for key, value in state_dict.items()}
def check_keys(model, pretrained_state_dict, print_unuse=True):
'''
check keys between the pre-trained checkpoint and the model keys
'''
ckpt_keys = set(pretrained_state_dict.keys())
model_keys = set(model.state_dict().keys())
used_pretrained_keys = model_keys & ckpt_keys
unused_pretrained_keys = list(ckpt_keys - model_keys)
missing_keys = list(model_keys - ckpt_keys)
# remove num_batches_tracked
for k in sorted(missing_keys):
if 'num_batches_tracked' in k:
missing_keys.remove(k)
logger.info('missing keys:{}'.format(missing_keys))
if print_unuse:
logger.info('unused checkpoint keys:{}'.format(unused_pretrained_keys))
# print('used keys:{}'.format(used_pretrained_keys))
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
return True
def load_pretrain(model, pretrained_path, print_unuse=True, f2b=True, addhead=False):
'''
load pre-trained checkpoints
f2b: old pretrained model are saved with 'features.features'
addhead: previous pretrained AutoMatch are loss head.+
'''
print('load pretrained model from {}'.format(pretrained_path))
device = torch.cuda.current_device()
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
if "state_dict" in pretrained_dict.keys():
pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.')
else:
pretrained_dict = remove_prefix(pretrained_dict, 'module.') # remove multi-gpu label
if f2b:
pretrained_dict = change_f2b(pretrained_dict)
if addhead:
pretrained_dict = addhead_clsreg(pretrained_dict)
check_keys(model, pretrained_dict, print_unuse=print_unuse)
model.load_state_dict(pretrained_dict, strict=True)
return model
def restore_from(model, optimizer, ckpt_path):
'''
restir models
'''
print('restore from {}'.format(ckpt_path))
device = torch.cuda.current_device()
ckpt = torch.load(ckpt_path, map_location = lambda storage, loc: storage.cuda(device))
epoch = ckpt['epoch']
arch = ckpt['arch']
ckpt_model_dict = remove_prefix(ckpt['state_dict'], 'module.')
check_keys(model, ckpt_model_dict)
model.load_state_dict(ckpt_model_dict, strict=False)
optimizer.load_state_dict(ckpt['optimizer'])
return model, optimizer, epoch, arch
def save_checkpoint(states, is_best, output_dir, filename='checkpoint.pth.tar'):
"""
save checkpoint
"""
torch.save(states, join(output_dir, filename))
if is_best and 'state_dict' in states:
torch.save(states['state_dict'], join(output_dir, 'model_best.pth'))
def save_model(model, epoch, optimizer, model_name, cfg, isbest=False):
"""
save model
"""
if not exists(cfg.COMMON.CHECKPOINT_DIR):
makedirs(cfg.COMMON.CHECKPOINT_DIR)
save_checkpoint({
'epoch': epoch + 1,
'arch': model_name,
'state_dict': model.module.state_dict(),
'optimizer': optimizer.state_dict()
}, isbest, cfg.COMMON.CHECKPOINT_DIR, 'checkpoint_e%d.pth' % (epoch + 1))
def check_trainable(model, logger, print=True):
"""
print trainable params
"""
trainable_params = [p for p in model.parameters() if p.requires_grad]
logger.info('trainable params:')
if print:
for name, param in model.named_parameters():
if param.requires_grad:
logger.info(name)
assert len(trainable_params) > 0, 'no trainable parameters'
return trainable_params
def is_valid_number(x):
return not(math.isnan(x) or math.isinf(x) or x > 1e4)