forked from z1069614715/objectdetection_script
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov5-ContextAggregation.py
103 lines (82 loc) · 3.03 KB
/
yolov5-ContextAggregation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from mmcv.cnn import ConvModule
from mmengine.model import caffe2_xavier_init, constant_init
class ContextAggregation(nn.Module):
"""
Context Aggregation Block.
Args:
in_channels (int): Number of input channels.
reduction (int, optional): Channel reduction ratio. Default: 1.
conv_cfg (dict or None, optional): Config dict for the convolution
layer. Default: None.
"""
def __init__(self, in_channels, reduction=1):
super(ContextAggregation, self).__init__()
self.in_channels = in_channels
self.reduction = reduction
self.inter_channels = max(in_channels // reduction, 1)
conv_params = dict(kernel_size=1, act_cfg=None)
self.a = ConvModule(in_channels, 1, **conv_params)
self.k = ConvModule(in_channels, 1, **conv_params)
self.v = ConvModule(in_channels, self.inter_channels, **conv_params)
self.m = ConvModule(self.inter_channels, in_channels, **conv_params)
self.init_weights()
def init_weights(self):
for m in (self.a, self.k, self.v):
caffe2_xavier_init(m.conv)
constant_init(self.m.conv, 0)
def forward(self, x):
n, c = x.size(0), self.inter_channels
# a: [N, 1, H, W]
a = self.a(x).sigmoid()
# k: [N, 1, HW, 1]
k = self.k(x).view(n, 1, -1, 1).softmax(2)
# v: [N, 1, C, HW]
v = self.v(x).view(n, 1, c, -1)
# y: [N, C, 1, 1]
y = torch.matmul(v, k).view(n, c, 1, 1)
y = self.m(y) * a
return x + y
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[17, 1, ContextAggregation, []], # 24
[20, 1, ContextAggregation, []], # 25
[23, 1, ContextAggregation, []], # 26
[[24, 25, 26], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]