-
Notifications
You must be signed in to change notification settings - Fork 388
/
Copy pathopencv_img.py
188 lines (150 loc) · 5.12 KB
/
opencv_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import cv2
import numpy as np
import matplotlib.pyplot as plt
import math
# 读取图片
img = cv2.imread('me1.jpg')
src = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 新建目标图像
dst1 = np.zeros_like(img)
# 获取图像行和列
rows, cols = img.shape[:2]
# --------------毛玻璃效果--------------------
# 像素点邻域内随机像素点的颜色替代当前像素点的颜色
offsets = 5
random_num = 0
for y in range(rows - offsets):
for x in range(cols - offsets):
random_num = np.random.randint(0, offsets)
dst1[y, x] = src[y + random_num, x + random_num]
# -------油漆特效------------
# 图像灰度处理
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 自定义卷积核
kernel = np.array([[-1, -1, -1], [-1, 10, -1], [-1, -1, -1]])
# 图像浮雕效果
dst2 = cv2.filter2D(gray, -1, kernel)
# ----------素描特效-------------
# 高斯滤波降噪
gaussian = cv2.GaussianBlur(gray, (5, 5), 0)
# Canny算子
canny = cv2.Canny(gaussian, 50, 150)
# 阈值化处理
ret, dst3 = cv2.threshold(canny, 100, 255, cv2.THRESH_BINARY_INV)
# -------怀旧特效-----------------
# 新建目标图像
dst4 = np.zeros((rows, cols, 3), dtype="uint8")
# 图像怀旧特效
for i in range(rows):
for j in range(cols):
B = 0.272 * img[i, j][2] + 0.534 * img[i, j][1] + 0.131 * img[i, j][0]
G = 0.349 * img[i, j][2] + 0.686 * img[i, j][1] + 0.168 * img[i, j][0]
R = 0.393 * img[i, j][2] + 0.769 * img[i, j][1] + 0.189 * img[i, j][0]
if B > 255:
B = 255
if G > 255:
G = 255
if R > 255:
R = 255
dst4[i, j] = np.uint8((B, G, R))
# ---------------光照特效--------------------
# 设置中心点
centerX = rows / 2
centerY = cols / 2
print(centerX, centerY)
radius = min(centerX, centerY)
print(radius)
# 设置光照强度
strength = 200
# 新建目标图像
dst5 = np.zeros((rows, cols, 3), dtype="uint8")
# 图像光照特效
for i in range(rows):
for j in range(cols):
# 计算当前点到光照中心的距离(平面坐标系中两点之间的距离)
distance = math.pow((centerY - j), 2) + math.pow((centerX - i), 2)
# 获取原始图像
B = src[i, j][0]
G = src[i, j][1]
R = src[i, j][2]
if (distance < radius * radius):
# 按照距离大小计算增强的光照值
result = (int)(strength * (1.0 - math.sqrt(distance) / radius))
B = src[i, j][0] + result
G = src[i, j][1] + result
R = src[i, j][2] + result
# 判断边界 防止越界
B = min(255, max(0, B))
G = min(255, max(0, G))
R = min(255, max(0, R))
dst5[i, j] = np.uint8((B, G, R))
else:
dst5[i, j] = np.uint8((B, G, R))
# --------------怀旧特效-----------------
# 新建目标图像
dst6 = np.zeros((rows, cols, 3), dtype="uint8")
# 图像流年特效
for i in range(rows):
for j in range(cols):
# B通道的数值开平方乘以参数12
B = math.sqrt(src[i, j][0]) * 12
G = src[i, j][1]
R = src[i, j][2]
if B > 255:
B = 255
dst6[i, j] = np.uint8((B, G, R))
# ------------卡通特效-------------------
# 定义双边滤波的数目
num_bilateral = 7
# 用高斯金字塔降低取样
img_color = src
# 双边滤波处理
for i in range(num_bilateral):
img_color = cv2.bilateralFilter(img_color, d=9, sigmaColor=9, sigmaSpace=7)
# 灰度图像转换
img_gray = cv2.cvtColor(src, cv2.COLOR_RGB2GRAY)
# 中值滤波处理
img_blur = cv2.medianBlur(img_gray, 7)
# 边缘检测及自适应阈值化处理
img_edge = cv2.adaptiveThreshold(img_blur, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
blockSize=9,
C=2)
# 转换回彩色图像
img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
# 与运算
dst6 = cv2.bitwise_and(img_color, img_edge)
# ------------------均衡化特效--------------------
# 新建目标图像
dst7 = np.zeros((rows, cols, 3), dtype="uint8")
# 提取三个颜色通道
(b, g, r) = cv2.split(src)
# 彩色图像均衡化
bH = cv2.equalizeHist(b)
gH = cv2.equalizeHist(g)
rH = cv2.equalizeHist(r)
# 合并通道
dst7 = cv2.merge((bH, gH, rH))
# -----------边缘特效---------------------
# 高斯滤波降噪
gaussian = cv2.GaussianBlur(gray, (3, 3), 0)
# Canny算子
# dst8 = cv2.Canny(gaussian, 50, 150)
# Scharr算子
x = cv2.Scharr(gaussian, cv2.CV_32F, 1, 0) # X方向
y = cv2.Scharr(gaussian, cv2.CV_32F, 0, 1) # Y方向
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
dst8 = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
# 用来正常显示中文标签
plt.rcParams['font.sans-serif'] = ['SimHei']
# 循环显示图形
titles = ['原图', '毛玻璃', '浮雕', '素描', '怀旧', '光照', '卡通', '均衡化', '边缘']
images = [src, dst1, dst2, dst3, dst4, dst5, dst6, dst7, dst8]
for i in range(9):
plt.subplot(3, 3, i + 1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
if __name__ == '__main__':
plt.show()