forked from scikit-learn-contrib/sklearn-pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dataframe_mapper.py
859 lines (688 loc) · 24.9 KB
/
test_dataframe_mapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
# -*- coding: utf8 -*-
import pytest
from pkg_resources import parse_version
# In py3, mock is included with the unittest standard library
# In py2, it's a separate package
try:
from unittest.mock import Mock
except ImportError:
from mock import Mock
from pandas import DataFrame
import pandas as pd
from scipy import sparse
from sklearn import __version__ as sklearn_version
from sklearn.cross_validation import cross_val_score as sklearn_cv_score
from sklearn.datasets import load_iris
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction import DictVectorizer
from sklearn.preprocessing import (
Imputer, StandardScaler, OneHotEncoder, LabelBinarizer)
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.base import BaseEstimator, TransformerMixin
import sklearn.decomposition
import numpy as np
from numpy.testing import assert_array_equal
import pickle
from sklearn_pandas import DataFrameMapper, cross_val_score
from sklearn_pandas.dataframe_mapper import _handle_feature, _build_transformer
from sklearn_pandas.pipeline import TransformerPipeline
class MockXTransformer(object):
"""
Mock transformer that accepts no y argument.
"""
def fit(self, X):
return self
def transform(self, X):
return X
class MockTClassifier(object):
"""
Mock transformer/classifier.
"""
def fit(self, X, y=None):
return self
def transform(self, X):
return X
def predict(self, X):
return True
class DateEncoder():
def fit(self, X, y=None):
return self
def transform(self, X):
dt = X.dt
return pd.concat([dt.year, dt.month, dt.day], axis=1)
class ToSparseTransformer(BaseEstimator, TransformerMixin):
"""
Transforms numpy matrix to sparse format.
"""
def fit(self, X):
return self
def transform(self, X):
return sparse.csr_matrix(X)
class CustomTransformer(BaseEstimator, TransformerMixin):
"""
Example of transformer in which the number of classes
is not equals to the number of output columns.
"""
def fit(self, X, y=None):
self.min = X.min()
self.classes_ = np.unique(X)
return self
def transform(self, X):
classes = np.unique(X)
if len(np.setdiff1d(classes, self.classes_)) > 0:
raise ValueError('Unknown values found.')
return X - self.min
@pytest.fixture
def simple_dataframe():
return pd.DataFrame({'a': [1, 2, 3]})
@pytest.fixture
def complex_dataframe():
return pd.DataFrame({'target': ['a', 'a', 'b', 'b', 'c', 'c'],
'feat1': [1, 2, 3, 4, 5, 6],
'feat2': [1, 2, 3, 2, 3, 4]})
def test_transformed_names_simple(simple_dataframe):
"""
Get transformed names of features in `transformed_names` attribute
for simple transformation
"""
df = simple_dataframe
mapper = DataFrameMapper([('a', None)])
mapper.fit_transform(df)
assert mapper.transformed_names_ == ['a']
def test_transformed_names_binarizer(complex_dataframe):
"""
Get transformed names of features in `transformed_names` attribute
for a transformation that multiplies the number of columns
"""
df = complex_dataframe
mapper = DataFrameMapper([('target', LabelBinarizer())])
mapper.fit_transform(df)
assert mapper.transformed_names_ == ['target_a', 'target_b', 'target_c']
def test_transformed_names_binarizer_unicode():
df = pd.DataFrame({'target': [u'ñ', u'á', u'é']})
mapper = DataFrameMapper([('target', LabelBinarizer())])
mapper.fit_transform(df)
expected_names = {u'target_ñ', u'target_á', u'target_é'}
assert set(mapper.transformed_names_) == expected_names
def test_transformed_names_transformers_list(complex_dataframe):
"""
When using a list of transformers, use them in inverse order to get the
transformed names
"""
df = complex_dataframe
mapper = DataFrameMapper([
('target', [LabelBinarizer(), MockXTransformer()])
])
mapper.fit_transform(df)
assert mapper.transformed_names_ == ['target_a', 'target_b', 'target_c']
def test_transformed_names_simple_alias(simple_dataframe):
"""
If we specify an alias for a single output column, it is used for the
output
"""
df = simple_dataframe
mapper = DataFrameMapper([('a', None, {'alias': 'new_name'})])
mapper.fit_transform(df)
assert mapper.transformed_names_ == ['new_name']
def test_transformed_names_complex_alias(complex_dataframe):
"""
If we specify an alias for a multiple output column, it is used for the
output
"""
df = complex_dataframe
mapper = DataFrameMapper([('target', LabelBinarizer(), {'alias': 'new'})])
mapper.fit_transform(df)
assert mapper.transformed_names_ == ['new_a', 'new_b', 'new_c']
def test_exception_column_context_transform(simple_dataframe):
"""
If an exception is raised when transforming a column,
the exception includes the name of the column being transformed
"""
class FailingTransformer(object):
def fit(self, X):
pass
def transform(self, X):
raise Exception('Some exception')
df = simple_dataframe
mapper = DataFrameMapper([('a', FailingTransformer())])
mapper.fit(df)
with pytest.raises(Exception, match='a: Some exception'):
mapper.transform(df)
def test_exception_column_context_fit(simple_dataframe):
"""
If an exception is raised when fit a column,
the exception includes the name of the column being fitted
"""
class FailingFitter(object):
def fit(self, X):
raise Exception('Some exception')
df = simple_dataframe
mapper = DataFrameMapper([('a', FailingFitter())])
with pytest.raises(Exception, match='a: Some exception'):
mapper.fit(df)
def test_simple_df(simple_dataframe):
"""
Get a dataframe from a simple mapped dataframe
"""
df = simple_dataframe
mapper = DataFrameMapper([('a', None)], df_out=True)
transformed = mapper.fit_transform(df)
assert type(transformed) == pd.DataFrame
assert len(transformed["a"]) == len(simple_dataframe["a"])
def test_complex_df(complex_dataframe):
"""
Get a dataframe from a complex mapped dataframe
"""
df = complex_dataframe
mapper = DataFrameMapper(
[('target', None), ('feat1', None), ('feat2', None)],
df_out=True)
transformed = mapper.fit_transform(df)
assert len(transformed) == len(complex_dataframe)
for c in df.columns:
assert len(transformed[c]) == len(df[c])
def test_binarizer_df():
"""
Check level names from LabelBinarizer
"""
df = pd.DataFrame({'target': ['a', 'a', 'b', 'b', 'c', 'a']})
mapper = DataFrameMapper([('target', LabelBinarizer())], df_out=True)
transformed = mapper.fit_transform(df)
cols = transformed.columns
assert len(cols) == 3
assert cols[0] == 'target_a'
assert cols[1] == 'target_b'
assert cols[2] == 'target_c'
def test_binarizer_int_df():
"""
Check level names from LabelBinarizer for a numeric array.
"""
df = pd.DataFrame({'target': [5, 5, 6, 6, 7, 5]})
mapper = DataFrameMapper([('target', LabelBinarizer())], df_out=True)
transformed = mapper.fit_transform(df)
cols = transformed.columns
assert len(cols) == 3
assert cols[0] == 'target_5'
assert cols[1] == 'target_6'
assert cols[2] == 'target_7'
def test_binarizer2_df():
"""
Check level names from LabelBinarizer with just one output column
"""
df = pd.DataFrame({'target': ['a', 'a', 'b', 'b', 'a']})
mapper = DataFrameMapper([('target', LabelBinarizer())], df_out=True)
transformed = mapper.fit_transform(df)
cols = transformed.columns
assert len(cols) == 1
assert cols[0] == 'target'
def test_onehot_df():
"""
Check level ids from one-hot
"""
df = pd.DataFrame({'target': [0, 0, 1, 1, 2, 3, 0]})
mapper = DataFrameMapper([(['target'], OneHotEncoder())], df_out=True)
transformed = mapper.fit_transform(df)
cols = transformed.columns
assert len(cols) == 4
assert cols[0] == 'target_0'
assert cols[3] == 'target_3'
def test_customtransform_df():
"""
Check level ids from a transformer in which
the number of classes is not equals to the number of output columns.
"""
df = pd.DataFrame({'target': [6, 5, 7, 5, 4, 8, 8]})
mapper = DataFrameMapper([(['target'], CustomTransformer())], df_out=True)
transformed = mapper.fit_transform(df)
cols = transformed.columns
assert len(mapper.features[0][1].classes_) == 5
assert len(cols) == 1
assert cols[0] == 'target'
def test_preserve_df_index():
"""
The index is preserved when df_out=True
"""
df = pd.DataFrame({'target': [1, 2, 3]},
index=['a', 'b', 'c'])
mapper = DataFrameMapper([('target', None)],
df_out=True)
transformed = mapper.fit_transform(df)
assert_array_equal(transformed.index, df.index)
def test_preserve_df_index_rows_dropped():
"""
If df_out=True but the original df index length doesn't
match the number of final rows, use a numeric index
"""
class DropLastRowTransformer(object):
def fit(self, X):
return self
def transform(self, X):
return X[:-1]
df = pd.DataFrame({'target': [1, 2, 3]},
index=['a', 'b', 'c'])
mapper = DataFrameMapper([('target', DropLastRowTransformer())],
df_out=True)
transformed = mapper.fit_transform(df)
assert_array_equal(transformed.index, np.array([0, 1]))
def test_pca(complex_dataframe):
"""
Check multi in and out with PCA
"""
df = complex_dataframe
mapper = DataFrameMapper(
[(['feat1', 'feat2'], sklearn.decomposition.PCA(2))],
df_out=True)
transformed = mapper.fit_transform(df)
cols = transformed.columns
assert len(cols) == 2
assert cols[0] == 'feat1_feat2_0'
assert cols[1] == 'feat1_feat2_1'
def test_input_df_true_first_transformer(simple_dataframe, monkeypatch):
"""
If input_df is True, the first transformer is passed
a pd.Series instead of an np.array
"""
df = simple_dataframe
monkeypatch.setattr(MockXTransformer, 'fit', Mock())
monkeypatch.setattr(MockXTransformer, 'transform',
Mock(return_value=np.array([1, 2, 3])))
mapper = DataFrameMapper([
('a', MockXTransformer())
], input_df=True)
out = mapper.fit_transform(df)
args, _ = MockXTransformer().fit.call_args
assert isinstance(args[0], pd.Series)
args, _ = MockXTransformer().transform.call_args
assert isinstance(args[0], pd.Series)
assert_array_equal(out, np.array([1, 2, 3]).reshape(-1, 1))
def test_input_df_true_next_transformers(simple_dataframe, monkeypatch):
"""
If input_df is True, the subsequent transformers get passed pandas
objects instead of numpy arrays (given the previous transformers
output pandas objects as well)
"""
df = simple_dataframe
monkeypatch.setattr(MockTClassifier, 'fit', Mock())
monkeypatch.setattr(MockTClassifier, 'transform',
Mock(return_value=pd.Series([1, 2, 3])))
mapper = DataFrameMapper([
('a', [MockXTransformer(), MockTClassifier()])
], input_df=True)
out = mapper.fit_transform(df)
args, _ = MockTClassifier().fit.call_args
assert isinstance(args[0], pd.Series)
assert_array_equal(out, np.array([1, 2, 3]).reshape(-1, 1))
def test_input_df_true_multiple_cols(complex_dataframe):
"""
When input_df is True, applying transformers to multiple columns
works as expected
"""
df = complex_dataframe
mapper = DataFrameMapper([
('target', MockXTransformer()),
('feat1', MockXTransformer()),
], input_df=True)
out = mapper.fit_transform(df)
assert_array_equal(out[:, 0], df['target'].values)
assert_array_equal(out[:, 1], df['feat1'].values)
def test_input_df_date_encoder():
"""
When input_df is True we can apply a transformer that only works
with pandas dataframes like a DateEncoder
"""
df = pd.DataFrame(
{'dates': pd.date_range('2015-10-30', '2015-11-02')})
mapper = DataFrameMapper([
('dates', DateEncoder())
], input_df=True)
out = mapper.fit_transform(df)
expected = np.array([
[2015, 10, 30],
[2015, 10, 31],
[2015, 11, 1],
[2015, 11, 2]
])
assert_array_equal(out, expected)
def test_local_input_df_date_encoder():
"""
When input_df is True we can apply a transformer that only works
with pandas dataframes like a DateEncoder
"""
df = pd.DataFrame(
{'dates': pd.date_range('2015-10-30', '2015-11-02')})
mapper = DataFrameMapper([
('dates', DateEncoder(), {'input_df': True})
], input_df=False)
out = mapper.fit_transform(df)
expected = np.array([
[2015, 10, 30],
[2015, 10, 31],
[2015, 11, 1],
[2015, 11, 2]
])
assert_array_equal(out, expected)
def test_nonexistent_columns_explicit_fail(simple_dataframe):
"""
If a nonexistent column is selected, KeyError is raised.
"""
mapper = DataFrameMapper(None)
with pytest.raises(KeyError):
mapper._get_col_subset(simple_dataframe, ['nonexistent_feature'])
def test_get_col_subset_single_column_array(simple_dataframe):
"""
Selecting a single column should return a 1-dimensional numpy array.
"""
mapper = DataFrameMapper(None)
array = mapper._get_col_subset(simple_dataframe, "a")
assert type(array) == np.ndarray
assert array.shape == (len(simple_dataframe["a"]),)
def test_get_col_subset_single_column_list(simple_dataframe):
"""
Selecting a list of columns (even if the list contains a single element)
should return a 2-dimensional numpy array.
"""
mapper = DataFrameMapper(None)
array = mapper._get_col_subset(simple_dataframe, ["a"])
assert type(array) == np.ndarray
assert array.shape == (len(simple_dataframe["a"]), 1)
def test_cols_string_array(simple_dataframe):
"""
If an string specified as the columns, the transformer
is called with a 1-d array as input.
"""
df = simple_dataframe
mock_transformer = Mock()
mock_transformer.transform.return_value = np.array([1, 2, 3]) # do nothing
mapper = DataFrameMapper([("a", mock_transformer)])
mapper.fit_transform(df)
args, kwargs = mock_transformer.fit.call_args
assert args[0].shape == (3,)
def test_cols_list_column_vector(simple_dataframe):
"""
If a one-element list is specified as the columns, the transformer
is called with a column vector as input.
"""
df = simple_dataframe
mock_transformer = Mock()
mock_transformer.transform.return_value = np.array([1, 2, 3]) # do nothing
mapper = DataFrameMapper([(["a"], mock_transformer)])
mapper.fit_transform(df)
args, kwargs = mock_transformer.fit.call_args
assert args[0].shape == (3, 1)
def test_handle_feature_2dim():
"""
2-dimensional arrays are returned unchanged.
"""
array = np.array([[1, 2], [3, 4]])
assert_array_equal(_handle_feature(array), array)
def test_handle_feature_1dim():
"""
1-dimensional arrays are converted to 2-dimensional column vectors.
"""
array = np.array([1, 2])
assert_array_equal(_handle_feature(array), np.array([[1], [2]]))
def test_build_transformers():
"""
When a list of transformers is passed, return a pipeline with
each element of the iterable as a step of the pipeline.
"""
transformers = [MockTClassifier(), MockTClassifier()]
pipeline = _build_transformer(transformers)
assert isinstance(pipeline, Pipeline)
for ix, transformer in enumerate(transformers):
assert pipeline.steps[ix][1] == transformer
def test_selected_columns():
"""
selected_columns returns a set of the columns appearing in the features
of the mapper.
"""
mapper = DataFrameMapper([
('a', None),
(['a', 'b'], None)
])
assert mapper._selected_columns == {'a', 'b'}
def test_unselected_columns():
"""
selected_columns returns a list of the columns not appearing in the
features of the mapper but present in the given dataframe.
"""
df = pd.DataFrame({'a': [1], 'b': [2], 'c': [3]})
mapper = DataFrameMapper([
('a', None),
(['a', 'b'], None)
])
assert 'c' in mapper._unselected_columns(df)
def test_default_false():
"""
If default=False, non explicitly selected columns are discarded.
"""
df = pd.DataFrame({'a': [1, 2, 3], 'b': [3, 5, 7]})
mapper = DataFrameMapper([
('b', None)
], default=False)
transformed = mapper.fit_transform(df)
assert transformed.shape == (3, 1)
def test_default_none():
"""
If default=None, non explicitly selected columns are passed through
untransformed.
"""
df = pd.DataFrame({'a': [1, 2, 3], 'b': [3, 5, 7]})
mapper = DataFrameMapper([
(['a'], OneHotEncoder())
], default=None)
transformed = mapper.fit_transform(df)
assert (transformed[:, 3] == np.array([3, 5, 7]).T).all()
def test_default_none_names():
"""
If default=None, column names are returned unmodified.
"""
df = pd.DataFrame({'a': [1, 2, 3], 'b': [3, 5, 7]})
mapper = DataFrameMapper([], default=None)
mapper.fit_transform(df)
assert mapper.transformed_names_ == ['a', 'b']
def test_default_transformer():
"""
If default=Transformer, non explicitly selected columns are applied this
transformer.
"""
df = pd.DataFrame({'a': [1, np.nan, 3], })
mapper = DataFrameMapper([], default=Imputer())
transformed = mapper.fit_transform(df)
assert (transformed[: 0] == np.array([1., 2., 3.])).all()
def test_list_transformers_single_arg(simple_dataframe):
"""
Multiple transformers can be specified in a list even if some of them
only accept one X argument instead of two (X, y).
"""
mapper = DataFrameMapper([
('a', [MockXTransformer()])
])
# doesn't fail
mapper.fit_transform(simple_dataframe)
def test_list_transformers():
"""
Specifying a list of transformers applies them sequentially to the
selected column.
"""
dataframe = pd.DataFrame({"a": [1, np.nan, 3], "b": [1, 5, 7]},
dtype=np.float64)
mapper = DataFrameMapper([
(["a"], [Imputer(), StandardScaler()]),
(["b"], StandardScaler()),
])
dmatrix = mapper.fit_transform(dataframe)
assert pd.isnull(dmatrix).sum() == 0 # no null values
# all features have mean 0 and std deviation 1 (standardized)
assert (abs(dmatrix.mean(axis=0) - 0) <= 1e-6).all()
assert (abs(dmatrix.std(axis=0) - 1) <= 1e-6).all()
def test_list_transformers_old_unpickle(simple_dataframe):
mapper = DataFrameMapper(None)
# simulate the mapper was created with < 1.0.0 code
mapper.features = [('a', [MockXTransformer()])]
mapper_pickled = pickle.dumps(mapper)
loaded_mapper = pickle.loads(mapper_pickled)
transformer = loaded_mapper.features[0][1]
assert isinstance(transformer, TransformerPipeline)
assert isinstance(transformer.steps[0][1], MockXTransformer)
def test_default_old_unpickle(simple_dataframe):
mapper = DataFrameMapper([('a', None)])
# simulate the mapper was pickled before the ``default`` init argument
# existed
del mapper.default
mapper_pickled = pickle.dumps(mapper)
loaded_mapper = pickle.loads(mapper_pickled)
loaded_mapper.fit_transform(simple_dataframe) # doesn't fail
def test_build_features_old_unpickle(simple_dataframe):
"""
Fitted mappers pickled before the built_features and built_default
attributes can correctly transform
"""
df = simple_dataframe
mapper = DataFrameMapper([('a', None)])
mapper.fit(df)
# simulate the mapper was pickled before the attributes existed
del mapper.built_features
del mapper.built_default
mapper_pickled = pickle.dumps(mapper)
loaded_mapper = pickle.loads(mapper_pickled)
loaded_mapper.transform(simple_dataframe) # doesn't fail
def test_sparse_features(simple_dataframe):
"""
If any of the extracted features is sparse and "sparse" argument
is true, the hstacked result is also sparse.
"""
df = simple_dataframe
mapper = DataFrameMapper([
("a", ToSparseTransformer())
], sparse=True)
dmatrix = mapper.fit_transform(df)
assert type(dmatrix) == sparse.csr.csr_matrix
def test_sparse_off(simple_dataframe):
"""
If the resulting features are sparse but the "sparse" argument
of the mapper is False, return a non-sparse matrix.
"""
df = simple_dataframe
mapper = DataFrameMapper([
("a", ToSparseTransformer())
], sparse=False)
dmatrix = mapper.fit_transform(df)
assert type(dmatrix) != sparse.csr.csr_matrix
def test_fit_with_optional_y_arg(complex_dataframe):
"""
Transformers with an optional y argument in the fit method
are handled correctly
"""
df = complex_dataframe
mapper = DataFrameMapper([(['feat1', 'feat2'], MockTClassifier())])
# doesn't fail
mapper.fit(df[['feat1', 'feat2']], df['target'])
def test_fit_with_required_y_arg(complex_dataframe):
"""
Transformers with a required y argument in the fit method
are handled and perform correctly
"""
df = complex_dataframe
mapper = DataFrameMapper([(['feat1', 'feat2'], SelectKBest(chi2, k=1))])
# fit, doesn't fail
ft_arr = mapper.fit(df[['feat1', 'feat2']], df['target'])
# fit_transform
ft_arr = mapper.fit_transform(df[['feat1', 'feat2']], df['target'])
assert_array_equal(ft_arr, df[['feat1']].values)
# transform
t_arr = mapper.transform(df[['feat1', 'feat2']])
assert_array_equal(t_arr, df[['feat1']].values)
# Integration tests with real dataframes
@pytest.fixture
def iris_dataframe():
iris = load_iris()
return DataFrame(
data={
iris.feature_names[0]: iris.data[:, 0],
iris.feature_names[1]: iris.data[:, 1],
iris.feature_names[2]: iris.data[:, 2],
iris.feature_names[3]: iris.data[:, 3],
"species": np.array([iris.target_names[e] for e in iris.target])
}
)
@pytest.fixture
def cars_dataframe():
return pd.read_csv("tests/test_data/cars.csv.gz", compression='gzip')
def test_with_iris_dataframe(iris_dataframe):
pipeline = Pipeline([
("preprocess", DataFrameMapper([
("petal length (cm)", None),
("petal width (cm)", None),
("sepal length (cm)", None),
("sepal width (cm)", None),
])),
("classify", SVC(kernel='linear'))
])
data = iris_dataframe.drop("species", axis=1)
labels = iris_dataframe["species"]
scores = cross_val_score(pipeline, data, labels)
assert scores.mean() > 0.96
assert (scores.std() * 2) < 0.04
def test_dict_vectorizer():
df = pd.DataFrame(
[[{'a': 1, 'b': 2}], [{'a': 3}]],
columns=['colA']
)
outdf = DataFrameMapper(
[('colA', DictVectorizer())],
df_out=True,
default=False
).fit_transform(df)
columns = sorted(list(outdf.columns))
assert len(columns) == 2
assert columns[0] == 'colA_a'
assert columns[1] == 'colA_b'
def test_with_car_dataframe(cars_dataframe):
pipeline = Pipeline([
("preprocess", DataFrameMapper([
("description", CountVectorizer()),
])),
("classify", SVC(kernel='linear'))
])
data = cars_dataframe.drop("model", axis=1)
labels = cars_dataframe["model"]
scores = cross_val_score(pipeline, data, labels)
assert scores.mean() > 0.30
@pytest.mark.skipIf(parse_version(sklearn_version) < parse_version('0.16'))
def test_direct_cross_validation(iris_dataframe):
"""
Starting with sklearn>=0.16.0 we no longer need CV wrappers for dataframes.
See https://github.com/paulgb/sklearn-pandas/issues/11
"""
pipeline = Pipeline([
("preprocess", DataFrameMapper([
("petal length (cm)", None),
("petal width (cm)", None),
("sepal length (cm)", None),
("sepal width (cm)", None),
])),
("classify", SVC(kernel='linear'))
])
data = iris_dataframe.drop("species", axis=1)
labels = iris_dataframe["species"]
scores = sklearn_cv_score(pipeline, data, labels)
assert scores.mean() > 0.96
assert (scores.std() * 2) < 0.04
def test_heterogeneous_output_types_input_df():
"""
Modify feat2, but pass feat1 through unmodified.
This fails if input_df == False
"""
df = pd.DataFrame({
'feat1': [1, 2, 3, 4, 5, 6],
'feat2': [1.0, 2.0, 3.0, 2.0, 3.0, 4.0]
})
M = DataFrameMapper([
(['feat2'], StandardScaler())
], input_df=True, df_out=True, default=None)
dft = M.fit_transform(df)
assert dft['feat1'].dtype == np.dtype('int64')
assert dft['feat2'].dtype == np.dtype('float64')