-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
344 lines (291 loc) · 13.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import torch
import numpy as np
import os
import sys
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from tensorboardX import SummaryWriter
from sklearn.metrics import confusion_matrix
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import itertools
import csv
Name_dict = {
'MNIST' : ['0','1','2','3','4','5','6','7','8','9'],
'skin7' : ['MEL', 'NV', 'BCC', 'AKIEC', 'BKL', 'DF', 'VASC'],
'Retina' : ['0','1','2','3','4'],
'Xray14': ['Atelectasis','Cardiomegaly','Consolidation','Edema','Effusion','Emphysema','Fibrosis','Hernia','Infiltration','Mass',
'No_Finding','Nodule','Pleural_Thickening','Pneumonia','Pneumothorax'],
'xray3' : ['Normal', 'Lung Opacity', '‘No Lung Opacity/Not Normal'],
'covid19' : ['Normal','covid19','Others']
}
param_grid =[
{
'weights':['uniform'],
'n_neighbors': [1,3,5],
'p': [2]
}
]
knn_clf = KNeighborsClassifier()
grid_search = GridSearchCV(knn_clf,param_grid,cv=4,scoring='f1_macro')
cuda = torch.cuda.is_available()
def extract_embeddings(dataloader, model, dimension):
with torch.no_grad():
model.eval()
embeddings = np.zeros((len(dataloader.dataset), dimension))#num_of_dim
labels = np.zeros(len(dataloader.dataset))
k = 0
for images, target in dataloader:
if cuda:
images = images.cuda()
embeddings[k:k+len(images)] = model.get_embedding(images).data.cpu().numpy()
labels[k:k+len(images)] = target.numpy()
k += len(images)
return embeddings, labels
def fit(dataset_name, logName, train_loader, val_loader, model, loss_fn, optimizer, scheduler, n_epochs, cuda, log_interval, metrics=[],
start_epoch=0, *EmbeddingArgs):
"""
Loaders, model, loss function and metrics should work together for a given task,
i.e. The model should be able to process data output of loaders,
loss function should process target output of loaders and outputs from the model
Examples: Classification: batch loader, classification model, NLL loss, accuracy metric
Siamese network: Siamese loader, siamese model, contrastive loss
Online triplet learning: batch loader, embedding model, online triplet loss
"""
if len(EmbeddingArgs) != 0:
assert len(EmbeddingArgs)==3
Embedding_Mode = True
n_dim = EmbeddingArgs[0]
all_train_loader = EmbeddingArgs[1]
all_test_loader = EmbeddingArgs[2]
train_Args = (n_dim,all_train_loader)
test_Args = (n_dim,all_test_loader)
else:
Embedding_Mode = False
train_Args = ()
test_Args = ()
output_writer_path = os.path.join('./run', logName)
checkpoint_path = output_writer_path
csvfileName = os.path.join(output_writer_path,'result.csv')
writer = SummaryWriter(output_writer_path)
Best_f1 = 0.0
with open(csvfileName,'w',newline='') as csvfile:
csvwriter = csv.writer(csvfile)
Metrics = ['_p','_r','_f1']
firstRow = []
for name in Name_dict[dataset_name]:
for m in Metrics:
firstRow.append(name+m)
firstRow.extend(['mean_p','mean_r','mean_f1'])
csvwriter.writerow(firstRow)
for epoch in range(0, start_epoch):
scheduler.step()
for epoch in range(start_epoch, n_epochs):
scheduler.step()
# Train stage
train_loss, metrics = train_epoch(dataset_name,epoch,writer,train_loader, model, loss_fn, optimizer, cuda, log_interval, metrics,*train_Args)
writer.add_scalar('train/loss', train_loss, epoch)
message = 'Epoch: {}/{}. Train set: Average loss: {:.4f}'.format(epoch + 1, n_epochs, train_loss)
for metric in metrics:
message += '\t{}: {}'.format(metric.name(), metric.value())
val_loss, metrics, test_f1 , test_mca , test_mcr = test_epoch(dataset_name,epoch,csvwriter,writer,val_loader, model, loss_fn, cuda, metrics,*test_Args)
if test_f1 > Best_f1:
Best_f1 = test_f1
torch.save(model.state_dict(),checkpoint_path+'/Mf1-{:.4f}'.format(Best_f1)+'.pth')
print('*************** Best_f1 Log ***************\nMf1-{:.4f}\tMCA-{:.4f}\tMCR-{:.4f}'.format(test_f1 , test_mca , test_mcr))
if epoch+1 == n_epochs:
print('*************** End_epoch Log ***************\nMf1-{:.4f}\tMCA-{:.4f}\tMCR-{:.4f}'.format(test_f1 , test_mca , test_mcr))
val_loss /= len(val_loader)
#######summary_writer#########
#necessary for test_loss{classification or triplet loss}
writer.add_scalar('test/loss', train_loss, epoch)
####
message += '\nEpoch: {}/{}. Validation set: Average loss: {:.4f}'.format(epoch + 1, n_epochs,
val_loss)
for metric in metrics:
message += '\t{}: {}'.format(metric.name(), metric.value())
print(message)
def train_epoch(dataset_name,epoch,writer,train_loader,model,loss_fn,optimizer,cuda,log_interval,metrics,*EmbeddingArgs):
if len(EmbeddingArgs) != 0:
assert len(EmbeddingArgs)==2
Mode = True
n_dim = EmbeddingArgs[0]
all_train_loader = EmbeddingArgs[1]
else:
Mode = False
for metric in metrics:
metric.reset()
model.train()
losses = []
total_loss = 0
correct = []
predicted = []
for batch_idx, (data, target) in enumerate(train_loader):
target = target if len(target) > 0 else None
if not type(data) in (tuple, list):
data = (data,)
if cuda:
data = tuple(d.cuda() for d in data)
if target is not None:
target = target.cuda()
optimizer.zero_grad()
outputs = model(*data)
if type(outputs) not in (tuple, list):
outputs = (outputs,)
loss_inputs = outputs
if target is not None:
target = (target,)
loss_inputs += target
loss_outputs = loss_fn(*loss_inputs)
loss = loss_outputs[0] if type(loss_outputs) in (tuple, list) else loss_outputs
losses.append(loss.item())
total_loss += loss.item()
loss.backward()
optimizer.step()
if Mode==False:
_, pred = torch.max(outputs[0].data, 1)
correct.extend(target[0].cpu().numpy())
predicted.extend(pred.cpu().numpy())
for metric in metrics:
metric(outputs, target, loss_outputs)
if batch_idx % log_interval == 0:
message = 'Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
batch_idx * len(data[0]), len(train_loader.dataset),
100. * batch_idx / len(train_loader), np.mean(losses))
for metric in metrics:
message += '\t{}: {}'.format(metric.name(), metric.value())
print(message)
losses = []
if Mode:
###To do correct = [] , predicted = []
train_data_embeddings , correct = extract_embeddings(all_train_loader,model,n_dim)
grid_search.fit(train_data_embeddings,correct)
predicted = grid_search.best_estimator_.predict(train_data_embeddings)
###
acc, precision, recall, f1, mca, mcr, m_f1 = getMetrics(dataset_name,correct, predicted)
print('--Train ==> ACC:{}\tMCA:{}\tMCR:{}\tMeanF1:{}'.format(acc,mca,mcr,m_f1))
####summary_writer TO DO
writer.add_scalar('train/mca', mca, epoch)
writer.add_scalar('train/acc', acc, epoch)
writer.add_scalar('train/mcr', mcr, epoch)
writer.add_scalar('train/mean_f1',m_f1,epoch)
for lbl,precision_ in enumerate(precision):
writer.add_scalar('train/class_precision_of_CLASS{}'.format(Name_dict[dataset_name][lbl]),precision_,epoch)
for lbl,recall_ in enumerate(recall):
writer.add_scalar('train/class_recall_of_CLASS{}'.format(Name_dict[dataset_name][lbl]),recall_,epoch)
for lbl,f1_ in enumerate(f1):
writer.add_scalar('train/class_f1_of_CLASS{}'.format(Name_dict[dataset_name][lbl]),f1_,epoch)
#
####
total_loss /= (batch_idx + 1)
return total_loss, metrics
def test_epoch(dataset_name,epoch,csvwriter,writer,val_loader,model, loss_fn, cuda, metrics,*EmbeddingArgs):
if len(EmbeddingArgs) != 0:
assert len(EmbeddingArgs)==2
Mode = True
n_dim = EmbeddingArgs[0]
all_test_loader = EmbeddingArgs[1]
else:
Mode = False
with torch.no_grad():
for metric in metrics:
metric.reset()
model.eval()
val_loss = 0
correct = []
predicted = []
for batch_idx, (data, target) in enumerate(val_loader):
target = target if len(target) > 0 else None
if not type(data) in (tuple, list):
data = (data,)
if cuda:
data = tuple(d.cuda() for d in data)
if target is not None:
target = target.cuda()
outputs = model(*data)
if type(outputs) not in (tuple, list):
outputs = (outputs,)
loss_inputs = outputs
if target is not None:
target = (target,)
loss_inputs += target
loss_outputs = loss_fn(*loss_inputs)
loss = loss_outputs[0] if type(loss_outputs) in (tuple, list) else loss_outputs
val_loss += loss.item()
if Mode==False:
_, pred = torch.max(outputs[0].data, 1)
correct.extend(target[0].cpu().numpy())
predicted.extend(pred.cpu().numpy())
for metric in metrics:
metric(outputs, target, loss_outputs)
if Mode:
test_data_embeddings , correct = extract_embeddings(all_test_loader,model,n_dim)
predicted = grid_search.best_estimator_.predict(test_data_embeddings)
if epoch%5==0:
writer.add_embedding(test_data_embeddings,
metadata = correct,
global_step = epoch
)
acc, precision, recall, f1, mca, mcr, m_f1 = getMetrics(dataset_name, correct, predicted)
epochRow = []
for i in range(len(Name_dict[dataset_name])):
epochRow.extend([precision[i],recall[i],f1[i]])
epochRow.extend([mca,mcr,m_f1])
csvwriter.writerow(epochRow)
print('--Test ==> ACC:{}\tMCA:{}\tMCR:{}\tMeanF1:{}'.format(acc,mca,mcr,m_f1))
if epoch%5==0:
fig, title = plot_confusion_matrix(dataset_name,correct, predicted,False)
plt.close()
writer.add_figure(title, fig, epoch)
writer.add_scalar('test/mca', mca, epoch)
writer.add_scalar('test/acc', acc, epoch)
writer.add_scalar('test/mcr', mcr, epoch)
writer.add_scalar('test/mean_f1',m_f1,epoch)
for lbl,precision_ in enumerate(precision):
writer.add_scalar('test/class_precision_of_CLASS{}'.format(Name_dict[dataset_name][lbl]),precision_,epoch)
for lbl,recall_ in enumerate(recall):
writer.add_scalar('test/class_recall_of_CLASS{}'.format(Name_dict[dataset_name][lbl]),recall_,epoch)
for lbl,f1_ in enumerate(f1):
writer.add_scalar('test/class_f1_of_CLASS{}'.format(Name_dict[dataset_name][lbl]),f1_,epoch)
return val_loss, metrics , m_f1 , mca , mcr
def getMetrics(name,correct, predicted):
acc = accuracy_score(correct,predicted)
precision = precision_score(correct,predicted,average=None)
recall = recall_score(correct,predicted,average=None)
f1 = f1_score(correct,predicted,average=None)
mca = precision.mean()
mcr = recall.mean()
m_f1 = f1.mean()
return acc, precision, recall, f1, mca, mcr, m_f1
def plot_confusion_matrix(name, y_true, y_pred, normalized=True):
classes = Name_dict[name]
n_classes = len(classes)
cm = confusion_matrix(y_true,y_pred)
title = 'confusion matrix {}'
if normalized == True:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
title.format('Normalize')
else:
title.format('Not Normalize')
np.set_printoptions(precision=2)
fig = plt.figure(figsize=(n_classes, n_classes), dpi=320, facecolor='w', edgecolor='k')
ax = fig.add_subplot(1, 1, 1)
ax.imshow(cm, cmap='Oranges')
tick_marks = np.arange(len(classes))
ax.set_xlabel('Predicted', fontsize=7)
ax.set_xticks(tick_marks)
ax.set_xticklabels(classes, fontsize=4, rotation=-90, ha='center')
ax.xaxis.set_label_position('bottom')
ax.xaxis.tick_bottom()
ax.set_ylabel('True Label', fontsize=7)
ax.set_yticks(tick_marks)
ax.set_yticklabels(classes, fontsize=4, va ='center')
ax.yaxis.set_label_position('left')
ax.yaxis.tick_left()
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
ax.text(j, i, format(cm[i, j], 'f') if cm[i,j]!=0 else '.', horizontalalignment="center", fontsize=6, verticalalignment='center', color= "black")
fig.set_tight_layout(True)
return fig, title