-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathta_plot_context.py
217 lines (180 loc) · 7.92 KB
/
ta_plot_context.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from collections import defaultdict
from typing import Any, Union, Tuple
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplcursors
import numpy as np
import pandas as pd
from matplotlib.widgets import SpanSelector, MultiCursor
from pandas_ml_common import Typing
from pandas_ta_quant_plot.plot_container import PlotContainer
from pandas_ta_quant_plot.plot_utils import color_positive_negative
class PlotContext(object):
def __init__(self,
df: Typing.PatchedDataFrame,
range_slider_price: str = "Close",
width: int = 20,
main_height: int = 11,
start: Union[Any, int] = None,
stop: Union[Any, int] = None,
h_ratio: Tuple[int] = (10, 2),
w_ratio: Tuple[int] = (9, 1),
annotate: bool = False,
cursor: bool = False,
backend='notebook'
):
self.df = df
self.range_slider_price = range_slider_price
self.width = width
self.main_height = main_height
self.h_ratio = h_ratio
self.w_ratio = w_ratio
self.subset = None if start is None and stop is None else slice(start, stop)
self.annotate = annotate
self.cursor = cursor
self.plots = dict()
self.plot_dist = False
self.widgets = defaultdict(lambda: [])
self.fig = None
self.ax = None
if backend is not None:
plt.switch_backend(backend.replace('notebook', 'nbAgg'))
def __enter__(self):
# plotting using a simplistic DSL like data structure
# with df.ta_plot() as p:
# p["main"].candlestick("Open", "High", "Low", "Close")
# p["main"].line(df["Close"].ta.sma(20))
# p["volume"].bar("Volume")
# p["macd"].plot(df["Close"].ta.macd(), "line", "line", "bar")
# p > "dist"
# bring back plotting:
return self
def __getitem__(self, item):
if item not in self.plots:
self.plots[item] = PlotContainer(self, item)
return self.plots[item]
def __exit__(self, exc_type, exc_value, exc_traceback):
if exc_type:
print(f'exc_type: {exc_type}')
print(f'exc_value: {exc_value}')
print(f'exc_traceback: {exc_traceback}')
# eventually return True if all excetions are handled
else:
self._plot_all()
return self
def _plot_all(self):
# def subplots(self, rows=2, figsize=(25, 10)):
# import matplotlib.pyplot as plt
# import matplotlib.dates as mdates
#
# _, axes = plt.subplots(rows, 1,
# sharex=True,
# gridspec_kw={"height_ratios": [3, *([1] * (rows - 1))]},
# figsize=figsize)
#
# for ax in axes if isinstance(axes, Iterable) else [axes]:
# ax.xaxis_date()
# ax.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y'))
#
# return axes
#
# def plot(self, rows=2, cols=1, figsize=(18, 10), main_height_ratio=4):
# pass # return TaPlot(self.df, figsize, rows, cols, main_height_ratio)
df = self.df
hr = self.h_ratio
wr = self.w_ratio
mh = self.main_height
rows = len(self.plots) + 1
cols = 2 if self.plot_dist else 1
height = mh # + max(len(self.plots) - 1, 0) * (mh / sum(h_ratio) / h_ratio[1])
grid_spec = {}
if len(self.plots) > 1:
grid_spec = {'height_ratios': [hr[0]] + [hr[1] for _ in range(1, len(self.plots))] + [1]}
else:
grid_spec = {'height_ratios': [hr[0], 1]}
if self.plot_dist:
grid_spec['width_ratios'] = wr
# create subplots grid
fig = plt.figure(figsize=(self.width, height), constrained_layout=True)
gs = fig.add_gridspec(nrows=rows, ncols=cols, **grid_spec)
sp = []
for r in range(rows):
if r == 0 or r >= rows - 1:
shared_ax = [fig.add_subplot(gs[r, c]) for c in range(cols)]
if isinstance(df.index, pd.DatetimeIndex):
shared_ax[0].xaxis_date()
shared_ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y'))
sp.append(shared_ax)
else:
sp.append([fig.add_subplot(gs[r, c], sharex=shared_ax[c]) if c == 0 else fig.add_subplot(gs[r, c]) for c in range(cols)])
ax = np.array(sp).squeeze()
self.fig = fig
self.ax = ax
# plot range slider
range_ax = ax[-1, 0] if ax.ndim > 1 else ax[-1]
range_ax.plot(df.index, df[self.range_slider_price].values)
span_selector = SpanSelector(range_ax, onselect=self._plot_subplots, direction='horizontal',
rectprops=dict(alpha=0.5, facecolor='red'), span_stays=True)
self.widgets["selector"].append(span_selector)
if self.cursor:
self.widgets["cursor"].append(MultiCursor(fig.canvas, ax, horizOn=True, useblit=True, alpha=0.2))
# initial span selection
if self.subset is not None:
sdf = df[self.subset].index
xmin, xmax = sdf[0], sdf[-1]
if isinstance(df.index, pd.DatetimeIndex):
xmin, xmax = mdates.date2num(xmin), mdates.date2num(xmax)
span_selector.stay_rect.set_bounds(xmin, 0, xmax - xmin, 1)
span_selector.stay_rect.set_visible(True)
span_selector.onselect(xmin, xmax)
else:
self._plot_subplots()
# show figure now
self.fig.show()
def _plot_subplots(self, min_value=None, max_value=None):
len_data = len(self.df.index) + 1
start_idx = None
stop_idx = None
if min_value is not None:
if np.abs(min_value - max_value) <= 2:
min_value = None
max_value = None
else:
if isinstance(self.df.index, pd.DatetimeIndex):
min_value = mdates.num2date(min_value).replace(tzinfo=None)
for i, idx in enumerate(self.df.index):
if idx.replace(tzinfo=None) >= min_value:
start_idx = i
break
if max_value is not None:
if isinstance(self.df.index, pd.DatetimeIndex):
max_value = mdates.num2date(max_value).replace(tzinfo=None)
for i, idx in enumerate(reversed(self.df.index)):
if idx.replace(tzinfo=None) <= max_value:
stop_idx = len_data - i
break
for i in range(len(self.ax) - 1):
ax = self.ax[i] if self.ax.ndim > 1 else [self.ax[i]]
for a in ax: a.clear()
keys = list(self.plots.keys())
for a, p in self.plots.items():
p.render(self.ax[keys.index(a)], slice(start_idx, stop_idx))
if self.annotate:
for c in self.widgets["data label"]: c.remove()
self.widgets["data label"] = [mplcursors.cursor(ax) for ax in self.ax[:-1].flatten()]
return min_value, max_value
def __str__(self):
return f'{self.width}/{self.main_height}'
if __name__ == '__main__':
## df = pd.DataFrame({"a": [1, 2, 3]})
df = pd.read_csv("../pandas_ta_quant_plot_test/.data/SPY.csv", index_col="Date", parse_dates=True)
print(df.tail())
print(df.loc[['2019-11-11']][["Open", "Close"]])
print(color_positive_negative(df).loc[['2019-11-25']])
with df.ta_plot(range_slider_price='Close', backend=None) as p:
p["main"].candlestick("Open", "High", "Low", "Close")
p["main"].line(p.df["Close"])
p["volume"].bar("Volume", colors=color_positive_negative(p.df))
#p["macd"].plot(df["a"], "line", "line", "bar")
#p > "dist"
plt.show(block=True)