-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy path_decorators.py
68 lines (53 loc) · 2.45 KB
/
_decorators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from functools import wraps
import pandas as pd
import logging
from pandas_ml_common import unique_level_rows, unique_level_columns
from pandas_ml_common.utils import same_columns_after_level
_log = logging.getLogger(__name__)
def for_each_column(func):
@wraps(func)
def exec_on_each_column(df: pd.DataFrame, *args, **kwargs):
if df.ndim > 1 and df.shape[1] > 0:
results = [func(df[col], *args, **kwargs) for col in df.columns]
if results[0].ndim > 1 and results[0].shape[1] > 1:
for i, col in enumerate(df.columns):
results[i].columns = pd.MultiIndex.from_product([[col], results[i].columns.tolist()])
return pd.concat(results, axis=1, join='inner')
else:
return func(df, *args, **kwargs)
return exec_on_each_column
def for_each_top_level_column(func, level=0):
@wraps(func)
def exec_on_each_tl_column(df: pd.DataFrame, *args, **kwargs):
if df.ndim > 1 and isinstance(df.columns, pd.MultiIndex):
# check if the shape of the 2nd level is identical else threat as if not multi index
if same_columns_after_level(df, level):
top_level = unique_level_columns(df, level)
groups = [func(df.xs(group, axis=1, level=level), *args, **kwargs).to_frame().add_multi_index(group, inplace=True, level=level) for group in top_level]
return pd.concat(groups, axis=1)
else:
_log.warning(f"columns in further levels do not follow the same structure! Treat as normal Index")
return func(df, *args, **kwargs)
else:
return func(df, *args, **kwargs)
return exec_on_each_tl_column
def for_each_top_level_row(func):
@wraps(func)
def exec_on_each_tl_row(df: pd.DataFrame, *args, **kwargs):
if isinstance(df.index, pd.MultiIndex):
top_level = unique_level_rows(df, 0)
if len(top_level) > 1:
return pd.concat(
[func(df.loc[group], *args, **kwargs).add_multi_index(group, inplace=True, axis=0) for group in top_level],
axis=0
)
else:
return func(df, *args, **kwargs)
else:
return func(df, *args, **kwargs)
return exec_on_each_tl_row
def is_time_consuming(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
wrapper._is_timeconsuming = True
return wrapper