forked from Zziwei/Measuring-Mitigating-Mainstream-Bias
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDC.py
270 lines (209 loc) · 9.81 KB
/
DC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from time import time
import numpy as np
import pickle
import argparse
import pandas as pd
import utility
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
from scipy.sparse import csr_matrix
import utility
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
np.random.seed(1)
torch.random.manual_seed(1)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(1)
class DC(nn.Module):
def __init__(self, args, train_df, train_like, test_like, vali_like, device):
super(DC, self).__init__()
self.args = args
self.data = args.data
self.num_item = args.num_item
self.num_user = args.num_user
train_df = train_df
user_array = train_df['userId'].values.reshape(-1)
item_array = train_df['itemId'].values.reshape(-1)
self.train_mat = csr_matrix((np.ones(len(train_df)), (user_array, item_array)), shape=(self.num_user, self.num_item)).toarray()
Jaccard_mat = self.jaccard()
self.budget = args.budget
num_new_user = int(self.num_user * self.budget)
MS = np.load('./Data/' + args.data + '/MS_' + args.MS + '.npy')
ratios = -MS
ratios = ratios - np.min(ratios)
ratios = (ratios / np.max(ratios)) ** 1.
k = int(self.num_user * 0.5)
no_idx = np.argpartition(MS, -k)[-k:]
ratios[no_idx] = 0
ratios = ratios / np.sum(ratios)
new_mat = []
for u in range(self.num_user):
num_new = int(ratios[u] * num_new_user)
sim = Jaccard_mat[u]
t = self.args.t
sim_users = np.where(sim > t)[0]
k = 10
if len(sim_users) < k:
sim_users = np.argpartition(sim, -k)[-k:]
alpha = self.args.alpha
distribution = alpha * self.train_mat[u, :] + (1 - alpha) * np.mean(self.train_mat[sim_users], axis=0, keepdims=True)
new_users = np.random.random((num_new, self.num_item)) - distribution
new_users = (new_users <= 0) * 1.
new_mat.append(new_users)
new_mat = np.concatenate(new_mat, axis=0)
print('Generated %d new users' % new_mat.shape[0])
self.train_mat = np.concatenate((self.train_mat, new_mat), axis=0)
self.num_all_user = self.train_mat.shape[0]
self.train_like = train_like
self.test_like = test_like
self.vali_like = vali_like
self.enc_dims = [self.num_item, args.hidden]
self.dec_dims = self.enc_dims[::-1]
self.dims = self.enc_dims + self.dec_dims[1:]
self.batch_size = args.bs
self.epoch = args.epoch
self.lr = args.lr # learning rate
self.reg = args.reg # regularization term trade-off
self.dropout = args.dropout
self.anneal = args.anneal
self.display = args.display
self.device = device
self.build_graph()
def jaccard(self):
train_mat = self.train_mat
num_rating_per_user = np.sum(train_mat, axis=1, keepdims=True)
numerator = np.matmul(train_mat, train_mat.T)
denominator = num_rating_per_user + num_rating_per_user.T - numerator
denominator[denominator == 0] = 1
Jaccard_mat = numerator / denominator
Jaccard_mat *= (1 - np.eye(train_mat.shape[0]))
return Jaccard_mat
def predict_all(self):
R = self.predict(np.arange(self.num_user))
return R
def build_graph(self):
self.encoder = nn.ModuleList()
for i, (d_in, d_out) in enumerate(zip(self.enc_dims[:-1], self.enc_dims[1:])):
if i == len(self.enc_dims[:-1]) - 1:
d_out *= 2
self.encoder.append(nn.Linear(d_in, d_out))
if i != len(self.enc_dims[:-1]) - 1:
self.encoder.append(nn.Tanh())
self.decoder = nn.ModuleList()
for i, (d_in, d_out) in enumerate(zip(self.dec_dims[:-1], self.dec_dims[1:])):
self.decoder.append(nn.Linear(d_in, d_out))
if i != len(self.dec_dims[:-1]) - 1:
self.decoder.append(nn.Tanh())
# optimizer
self.optimizer = torch.optim.Adam(self.parameters(), lr=self.lr, weight_decay=self.reg)
# Send model to device (cpu or gpu)
self.to(self.device)
def forward(self, x):
# encoder
h = F.dropout(F.normalize(x), p=self.dropout, training=self.training)
for layer in self.encoder:
h = layer(h)
# sample
mu_q = h[:, :self.enc_dims[-1]]
logvar_q = h[:, self.enc_dims[-1]:] # log sigmod^2 batch x 200
std_q = torch.exp(0.5 * logvar_q) # sigmod batch x 200
epsilon = torch.zeros_like(std_q).normal_(mean=0, std=0.01)
sampled_z = mu_q + self.training * epsilon * std_q
output = sampled_z
for layer in self.decoder:
output = layer(output)
if self.training:
kl_loss = ((0.5 * (-logvar_q + torch.exp(logvar_q) + torch.pow(mu_q, 2) - 1)).sum(1)).mean()
return output, kl_loss
else:
return output
def train_model(self):
best_result = 0.
best_epoch = -1
for epoch in range(1, self.epoch + 1):
if epoch - best_epoch > 10:
break
self.train()
# ======================== Train ========================
epoch_loss = 0.0
num_batch = int(self.num_all_user / self.batch_size) + 1
random_idx = np.random.permutation(self.num_all_user)
epoch_train_start = time()
for i in tqdm(range(num_batch)):
batch_idx = random_idx[(i * self.batch_size):min(self.num_all_user, (i + 1) * self.batch_size)]
batch_matrix = self.train_mat[batch_idx]
batch_matrix = torch.FloatTensor(batch_matrix).to(self.device)
batch_loss = self.train_model_per_batch(batch_matrix)
epoch_loss += batch_loss
epoch_train_time = time() - epoch_train_start
print("Training //", "Epoch %d //" % epoch, " Total loss = {:.5f}".format(epoch_loss),
" Total training time = {:.2f}s".format(epoch_train_time))
# ======================== Evaluate ========================
if epoch % self.display == 0:
self.eval()
epoch_eval_start = time()
Rec = self.predict_all()
precision, recall, f_score, ndcg = utility.MP_test_model_all(Rec, self.vali_like, self.train_like,
n_workers=10)
if np.mean(ndcg) > best_result:
utility.MP_test_model_all(Rec, self.test_like, self.train_like, n_workers=10)
best_epoch = epoch
best_result = np.mean(ndcg)
torch.save(self.state_dict(), './Data/' + self.data + '/DC.model')
with open('./Data/' + self.data + '/Rec_DC.npy', "wb") as f:
np.save(f, Rec.astype(np.float16))
print("Save the best model")
print("@" * 100)
print("Testing time : %.2fs" % (time() - epoch_eval_start))
def train_model_per_batch(self, batch_matrix):
# zero grad
self.optimizer.zero_grad()
# model forwrad
output, kl_loss = self.forward(batch_matrix)
# loss
ce_loss = -(F.log_softmax(output, 1) * batch_matrix).sum(1).mean()
loss = ce_loss + kl_loss * self.anneal
# backward
loss.backward()
# step
self.optimizer.step()
return loss
def predict(self, user_ids):
self.eval()
batch_eval_pos = self.train_mat[user_ids]
with torch.no_grad():
eval_input = torch.Tensor(batch_eval_pos).to(self.device)
eval_output = self.forward(eval_input).detach().cpu().numpy()
self.train()
return eval_output
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DC')
parser.add_argument('--epoch', type=int, default=100, help='number of epochs to train')
parser.add_argument('--display', type=int, default=1, help='evaluate mode every X epochs')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--reg', type=float, default=0.01, help='regularization')
parser.add_argument('--dropout', type=float, default=0.2, help='dropout')
parser.add_argument('--anneal', type=float, default=0.2, help='anneal')
parser.add_argument('--hidden', type=int, default=100, help='latent dimension')
parser.add_argument('--bs', type=int, default=1024, help='batch size')
parser.add_argument('--t', type=int, default=0.1, help='t')
parser.add_argument('--alpha', type=int, default=0.7, help='DC')
parser.add_argument('--budget', type=float, default=1., help='budget')
parser.add_argument('--data', type=str, default='ML1M', help='path to eval in the downloaded folder')
parser.add_argument('--MS', type=str, default='DeepSVDD', help='MS')
parser.add_argument('--MS', type=str, default='DeepSVDD', help='MS')
args = parser.parse_args()
with open('./Data/' + args.data + '/info.pkl', 'rb') as f:
info = pickle.load(f)
args.num_user = info['num_user']
args.num_item = info['num_item']
train_df = pd.read_csv('./Data/' + args.data + '/train_df.csv')
train_like = list(np.load('./Data/' + args.data + '/user_train_like.npy', allow_pickle=True))
test_like = list(np.load('./Data/' + args.data + '/user_test_like.npy', allow_pickle=True))
vali_like = list(np.load('./Data/' + args.data + '/user_vali_like.npy', allow_pickle=True))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('!' * 100)
model = DC(args, train_df, train_like, test_like, vali_like, device)
model.train_model()