-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
43 lines (37 loc) · 1.16 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#-*-coding:utf-8-*-
import numpy as np
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
from configure import *
models = {
"tiny": [32, "D", 64, "D", 128, "D", 256, "D", 512],
"vgg16": [64, 64, "D", 128, 128, "D", 256, 256, 256, "D", 512, 512, 512, "D", 512, 512, 512],
}
class Model(nn.Module):
def __init__(self, model_name, cls_num):
super(Model, self).__init__()
self.features = create_module(models[model_name])
self.gap = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(512, cls_num)
def forward(self, x):
y = self.features(x)
y = self.gap(y)
y = y.view(-1, 512)
return self.fc(y)
def create_module(lis,batchnorm=True):
layers = []
inc = 3
for l in lis:
if l is not "D":
conv = nn.Conv2d(inc, l, kernel_size=3, padding=1)
if batchnorm:
layers += [conv, nn.BatchNorm2d(l), nn.ReLU()]
else:
layers += [conv, nn.ReLU()]
inc = l
else:
layers += [nn.MaxPool2d(kernel_size=(2,2),stride=(2,2))]
return nn.Sequential(*layers)