-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
39 lines (34 loc) · 929 Bytes
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#-*-coding:utf-8-*-
import torch
import torch.nn as nn
import numpy as np
class MixUpLoss(nn.Module):
def __init__(self):
super(MixUpLoss,self).__init__()
self.loss = nn.CrossEntropyLoss()
def forward(self, output, y1, y2, lam):
"""
args:
output: output of model
y1: label1
y2: label2
lam: hyper parameter of lamba in mixpu
"""
return lam*self.loss(output,y1)+(1.0-lam)*self.loss(output,y2)
def create_mixup(x,y,alpha=0.2):
"""
args:
x: datas
y: one-hot labels
alpha(optional): hyper parameters
"""
lam = np.random.beta(alpha, alpha) #get ramdom value
N = x.size(0) #batch size
rand_idx = np.array([i for i in range(N)]) #create index
np.random.shuffle(rand_idx)
#get random shuffle
x2 = x[rand_idx]
y2 = y[rand_idx]
#mixup
mix = lam*x+(1.0-lam)*x2
return mix, y, y2, lam