forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTester.cpp
380 lines (333 loc) · 12.8 KB
/
Tester.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Tester.h"
#include <fenv.h>
#include <stdio.h>
#include <iomanip>
#include <iostream>
#include <limits>
#include <sstream>
#include <google/protobuf/text_format.h>
#include "paddle/utils/GlobalConstants.h"
#include "paddle/utils/PythonUtil.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Util.h"
#include "TesterConfig.h"
#include "paddle/gserver/gradientmachines/GradientMachineMode.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/gserver/layers/ValidationLayer.h"
namespace paddle {
Tester::Tester(const std::shared_ptr<TrainerConfigHelper>& config,
std::unique_ptr<TesterConfig>&& intconfig,
const GradientMachinePtr& gradientMachine,
const std::shared_ptr<ParameterUpdater>& parameterUpdater,
std::shared_ptr<DataProvider> testDataProvider)
: config_(config),
intconfig_(std::move(intconfig)),
gradientMachine_(gradientMachine),
parameterUpdater_(parameterUpdater),
testDataProvider_(testDataProvider) {
if (config_->getOptConfig().use_sparse_remote_updater()) {
LOG(FATAL) << "It's prohibited to set sparse_remote_update "
<< "when doing train and test jobs in the same "
<< "process. You could run paddle --job=test in "
<< "a separate process.";
}
testEvaluator_.reset(gradientMachine_->makeEvaluator());
if (intconfig_->distributeTest) {
testParameterClient_.reset(new ParameterClient2(true));
}
if (testParameterClient_) {
testParameterClient_->init(gradientMachine_->getParameters());
}
std::unique_ptr<ParameterUtilConfig> paramConfig(
new ParameterUtilConfig(intconfig_->saveOnlyOne,
intconfig_->savingPeriod,
intconfig_->loadsaveParametersInPserver,
intconfig_->config));
paramUtil_.reset(new ParameterUtil(
config_, std::move(paramConfig), gradientMachine_, parameterUpdater_));
}
void Tester::startTestPeriod() {
if (testDataProvider_) {
testDataProvider_->reset();
}
testEvaluator_->start();
testContext_.cost = 0;
testContext_.numSamples = 0;
parameterUpdater_->apply();
if (intconfig_->prevBatchState) {
gradientMachine_->getState(*intconfig_->trainState);
gradientMachine_->setState(*intconfig_->testState);
}
}
void Tester::testOneDataBatch(const DataBatch& dataBatch,
std::vector<Argument>* outArgs) {
testContext_.cost +=
forwardOneBatch(dataBatch, testEvaluator_.get(), outArgs);
testContext_.numSamples += dataBatch.getSize();
}
void Tester::testOnePeriod() {
DataBatch dataBatch;
int64_t batchSize = config_->getOptConfig().batch_size();
std::vector<Argument> outArgs;
startTestPeriod();
while (testDataProvider_->getNextBatch(batchSize, &dataBatch) != 0) {
testOneDataBatch(dataBatch, &outArgs);
}
finishTestPeriod();
}
void Tester::finishTestPeriod() {
if (intconfig_->prevBatchState) {
gradientMachine_->resetState();
}
testEvaluator_->finish();
CHECK_GT(testContext_.numSamples, 0)
<< "There is no samples in your test batch. Possibly "
"wrong implementation of DataProvidor.reset()";
LOG(INFO) << " Test samples=" << testContext_.numSamples
<< " cost=" << testContext_.cost / testContext_.numSamples
<< " Eval: " << *testEvaluator_;
parameterUpdater_->restore();
if (intconfig_->prevBatchState) {
gradientMachine_->getState(*intconfig_->testState);
gradientMachine_->setState(*intconfig_->trainState);
}
}
int64_t Tester::testOneBatchById(int64_t batchId) {
DataBatch dataBatch;
int32_t batchSize = config_->getOptConfig().batch_size();
testDataProvider_->getNextBatch(batchSize, &dataBatch);
int64_t actualBatchSize = dataBatch.getSize();
if (actualBatchSize == 0) {
return 0;
}
std::vector<Argument> outArgs;
stats_ += std::pair<int64_t, real>{
actualBatchSize,
forwardOneBatch(dataBatch, testEvaluator_.get(), &outArgs)};
if (((batchId + 1) % intconfig_->logPeriod) == 0) {
LOG(INFO) << " Batch=" << batchId + 1 << " " << stats_.getStats(false);
}
return actualBatchSize;
}
real Tester::forwardOneBatch(const DataBatch& dataBatch,
Evaluator* evaluator,
std::vector<Argument>* pOutArgs) {
auto& outArgs = *pOutArgs;
const std::vector<Argument>& inArgs = dataBatch.getStreams();
if (intconfig_->loadsaveParametersInPserver) {
REGISTER_TIMER("prefetch");
gradientMachine_->prefetch(inArgs);
parameterUpdater_->getParametersRemote(false /*full parameter*/,
true /*after apply*/);
}
gradientMachine_->forward(inArgs, &outArgs, PASS_TEST);
// write features if set this flag and outArgs is not empty
std::string featFile = intconfig_->featFile;
if (!featFile.empty() && outArgs.empty()) {
size_t numOutputs = outArgs.size();
std::vector<MatrixPtr> featMatrices;
featMatrices.resize(numOutputs);
for (size_t i = 0; i < numOutputs; ++i) {
featMatrices[i] = Matrix::create(outArgs[i].value->getHeight(),
outArgs[i].value->getWidth(),
false,
false); // CPU data buffer
featMatrices[i]->copyFrom(*(outArgs[i].value), HPPL_STREAM_DEFAULT);
}
hl_stream_synchronize(HPPL_STREAM_DEFAULT);
FILE* fp = fopen(featFile.c_str(), "ab+");
PCHECK(!ferror(fp)) << "Fail to open " << featFile;
size_t sampleNum = featMatrices[0]->getHeight();
for (size_t i = 0; i < sampleNum; ++i) {
for (size_t j = 0; j < numOutputs; ++j) {
size_t dim = featMatrices[j]->getWidth();
fwrite(featMatrices[j]->getData() + i * dim, sizeof(real), dim, fp);
}
}
fclose(fp);
}
if (evaluator) {
gradientMachine_->eval(evaluator);
}
// Save the output layers if predict_output_dir is not empty
std::string predictOutputDir = intconfig_->predictOutputDir;
if (!predictOutputDir.empty() && !outArgs.empty()) {
CHECK(intconfig_->testing) << "Only valid in test mode";
if (!os_.is_open()) {
// TODO(yuyang18): Refactor these lines.
constexpr int kBufLen = 100;
char buf[kBufLen];
snprintf(buf, kBufLen, "rank-%05d", intconfig_->trainerId);
mkDir(predictOutputDir.c_str());
std::string filename = path::join(predictOutputDir, buf);
os_.open(filename, std::ofstream::trunc);
CHECK(os_.is_open()) << "Failed to open file " << filename;
}
printOutput(outArgs, os_);
return 0.0; // In this case, there is no meaning to calculate cost
}
return Argument::sum(outArgs);
}
void Tester::testOnePassBatch(int passId) {
stats_.reset();
const std::vector<Argument> inArgs;
gradientMachine_->forward(inArgs, nullptr, PASS_TEST);
int64_t num;
real cost;
gradientMachine_->getStats(cost, num);
stats_ += std::pair<int64_t, real>{num, cost};
gradientMachine_->onPassEnd();
LOG(INFO) << " Pass=" << passId << " " << stats_.getStats(false);
}
void Tester::testOnePass(int passId) {
stats_.reset();
int64_t batchId = 0;
int num = 0;
if (intconfig_->prevBatchState) {
gradientMachine_->resetState();
}
testEvaluator_->start();
do {
num = testOneBatchById(batchId);
++batchId;
} while (num > 0);
gradientMachine_->onPassEnd();
testEvaluator_->finish();
LOG(INFO) << " Pass=" << passId << " " << stats_.getStats(false)
<< " Eval: " << *testEvaluator_;
if (intconfig_->distributeTest) {
testEvaluator_->distributeEval(testParameterClient_.get());
if (0 == intconfig_->trainerId) {
LOG(INFO) << "distribute eval: " << *testEvaluator_;
}
}
}
void Tester::test() {
CHECK(testDataProvider_) << "TestData is not specified";
testDataProvider_->setSkipShuffle();
testDataProvider_->reset();
gradientMachine_->start();
// For evaluation
std::vector<std::string> modelList;
std::string modelListFromConfig = intconfig_->modelList;
std::string initModelPath = intconfig_->initModelPath;
if (!modelListFromConfig.empty()) {
loadFileList(modelListFromConfig, modelList);
intconfig_->testPass = 0;
intconfig_->numPasses = modelList.size();
intconfig_->savingPeriod = 1;
CHECK_EQ(intconfig_->testWait, 0) << "--test_wait must be 0 for evaluation";
} else if (!initModelPath.empty()) {
modelList.push_back(initModelPath);
intconfig_->testPass = 0;
intconfig_->numPasses = 1;
intconfig_->savingPeriod = 1;
CHECK_EQ(intconfig_->testWait, 0) << "--test_wait must be 0 for evaluation";
}
for (int i = intconfig_->testPass; i < intconfig_->numPasses; ++i) {
int passId = i;
if (passId % intconfig_->savingPeriod == 0) {
if (intconfig_->testWait) {
while (paramUtil_->loadParameters(
passId, true /*local*/, true /*remote*/) == false) {
LOG(INFO) << "Waiting for parameters of pass " << passId;
sleep(60); // sleep 60s
}
} else {
if (modelList.size() == 0) {
CHECK_EQ(paramUtil_->loadParameters(
passId, true /*local*/, true /*remote*/),
true);
} else {
paramUtil_->loadParametersWithPath(
modelList[i], true /*local*/, true /*remote*/);
}
}
if (IGradientMachineMode::trainWholeDataInOneBatch(intconfig_->mode)) {
testOnePassBatch(passId);
} else {
testOnePass(passId);
}
if (passId + intconfig_->savingPeriod < intconfig_->numPasses) {
// if there is at least 1 more pass to test, then call reset,
// otherwise not.
testDataProvider_->reset();
}
}
}
gradientMachine_->finish();
}
void Tester::printOutput(const std::vector<Argument>& outArgs,
std::ostream& os) {
size_t numOutputs = outArgs.size();
size_t numIns = outArgs[0].getBatchSize();
if (cpuMat_.size() != numOutputs || cpuVec_.size() != numOutputs) {
cpuMat_.resize(numOutputs, nullptr);
cpuVec_.resize(numOutputs, nullptr);
}
for (size_t i = 0; i < numOutputs; ++i) {
if (outArgs[i].value != nullptr) {
if (outArgs[i].value->useGpu()) {
if (dynamic_cast<GpuMatrix*>(outArgs[i].value.get())) {
size_t dim = outArgs[i].value->getWidth();
Matrix::resizeOrCreate(cpuMat_[i], numIns, dim, false, false);
cpuMat_[i]->copyFrom(*outArgs[i].value);
} else if (dynamic_cast<GpuSparseMatrix*>(outArgs[i].value.get())) {
auto sparseMat =
dynamic_cast<GpuSparseMatrix*>(outArgs[i].value.get());
cpuMat_[i] = Matrix::createSparseMatrix(sparseMat->getHeight(),
sparseMat->getWidth(),
sparseMat->getElementCnt(),
sparseMat->getValueType(),
sparseMat->format_,
false, /* trans */
false); /* useGpu */
hl_stream_t stream = HPPL_STREAM_DEFAULT;
cpuMat_[i]->copyFrom(*sparseMat, stream);
} else {
LOG(WARNING) << "Not supported gpu matrix type";
}
}
} else if (outArgs[i].ids != nullptr) {
if (outArgs[i].ids->useGpu()) {
IVector::resizeOrCreate(cpuVec_[i], outArgs[i].ids->getSize(), false);
cpuVec_[i]->copyFrom(*outArgs[i].ids);
}
} else if (outArgs[i].strs != nullptr) {
continue;
} else {
LOG(WARNING) << "outArgs[" << i << "] has no data to print";
}
}
for (size_t i = 0; i < numIns; ++i) {
for (size_t j = 0; j < numOutputs; ++j) {
if (outArgs[j].value != nullptr) {
if (outArgs[j].value->useGpu()) {
cpuMat_[j]->printOneRow(os, i);
} else {
outArgs[j].value->printOneRow(os, i);
}
} else if (outArgs[j].ids != nullptr) {
if (outArgs[j].ids->useGpu()) {
cpuVec_[j]->printOneElement(os, i);
} else {
outArgs[j].ids->printOneElement(os, i);
}
} else if (outArgs[j].strs != nullptr) {
os << (*outArgs[j].strs)[i] << ";";
}
}
os << std::endl;
}
}
} // namespace paddle