-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist1.py
165 lines (121 loc) · 4.15 KB
/
mnist1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Kevin Heleodoro - MNIST digit recognition using CNN (PyTorch - https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html)
# ------ Import Statements ------ #
import sys
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# ------ Global Variables ------ #
# Get cpu, gpu, or mps device
device = (
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
# ------ Class Definitions ------ #
# Define model
class MyNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
)
# forward pass
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
# ------ Function Definitions ------ #
# Use the training data to train the model
def train_model(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
return
# Download the dataset and return the DataLoaders
def download_data():
# Training data
training_data = datasets.MNIST(
root="data/mnist1", train=True, download=True, transform=ToTensor()
)
# Test data
test_data = datasets.MNIST(
root="data/mnist1", train=False, download=True, transform=ToTensor()
)
batch_size = 64
# Create data loaders which wraps an iterable over the dataset
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
# Print out shape of the test data
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
return train_dataloader, test_dataloader
# Evaluate the model's performance
def test_model(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(
f"Test Error: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f} \n"
)
# Save the state of the model locally
def save_model(model, path="results/model.pth"):
torch.save(model.state_dict(), path)
print(f"Saved PyTorch Model State to {path}")
# Load the model from a local file
def load_model(path="results/model.pth"):
model = MyNetwork().to(device)
model.load_state_dict(torch.load(path))
return model
# ------ Main Function ------ #
def main(argv):
# Parse arguments
# Load data
train_dataloader, test_dataloader = download_data()
# Initiate model
model = MyNetwork().to(device)
print(f"Using {device} device")
print(model)
# Loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
# Train data over N epochs
epochs = 5
for t in range(epochs):
print(f"Epoch {t + 1}\n-------------------------------")
train_model(train_dataloader, model, loss_fn, optimizer)
test_model(test_dataloader, model, loss_fn)
print("Done!")
save_model(model, "model.pth")
# main function code
return
if __name__ == "__main__":
main(sys.argv)