forked from RAIVNLab/supsup
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
422 lines (343 loc) · 13.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import os
import pathlib
import random
import numpy as np
import math
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.tensorboard import SummaryWriter
from args import args
import adaptors
import data
import schedulers
import trainers
import utils
import seaborn as sns
import matplotlib.pyplot as plt
from collections import defaultdict
def main():
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# Make the a directory corresponding to this run for saving results, checkpoints etc.
i = 0
while True:
run_base_dir = pathlib.Path(f"{args.log_dir}/{args.name}~try={str(i)}")
if not run_base_dir.exists():
os.makedirs(run_base_dir)
args.name = args.name + f"~try={i}"
break
i += 1
(run_base_dir / "settings.txt").write_text(str(args))
args.run_base_dir = run_base_dir
print(f"=> Saving data in {run_base_dir}")
# Get dataloader.
data_loader = getattr(data, args.set)()
# Track accuracy on all tasks.
if args.num_tasks:
best_acc1 = [0.0 for _ in range(args.num_tasks)]
curr_acc1 = [0.0 for _ in range(args.num_tasks)]
adapt_acc1 = [0.0 for _ in range(args.num_tasks)]
# Get the model.
model = utils.get_model()
# If necessary, set the sparsity of the model of the model using the ER sparsity budget (see paper).
if args.er_sparsity:
for n, m in model.named_modules():
if hasattr(m, "sparsity"):
m.sparsity = min(
0.5,
args.sparsity
* (m.weight.size(0) + m.weight.size(1))
/ (
m.weight.size(0)
* m.weight.size(1)
* m.weight.size(2)
* m.weight.size(3)
),
)
print(f"Set sparsity of {n} to {m.sparsity}")
# Put the model on the GPU,
model = utils.set_gpu(model)
# Optionally resume from a checkpoint.
if args.resume:
if os.path.isfile(args.resume):
print(f"=> Loading checkpoint '{args.resume}'")
checkpoint = torch.load(
args.resume, map_location=f"cuda:{args.multigpu[0]}"
)
best_acc1 = checkpoint["best_acc1"]
pretrained_dict = checkpoint["state_dict"]
model_dict = model.state_dict()
pretrained_dict = {
k: v for k, v in pretrained_dict.items() if k in model_dict
}
model_dict.update(pretrained_dict)
model.load_state_dict(pretrained_dict)
print(f"=> Loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})")
else:
print(f"=> No checkpoint found at '{args.resume}'")
criterion = nn.CrossEntropyLoss().to(args.device)
writer = SummaryWriter(log_dir=run_base_dir)
# Track the number of tasks learned.
num_tasks_learned = 0
trainer = getattr(trainers, args.trainer or "default")
print(f"=> Using trainer {trainer}")
train, test = trainer.train, trainer.test
# Initialize model specific context (editorial note: avoids polluting main file)
if hasattr(trainer, "init"):
trainer.init(args)
# TODO: Put this in another file
if args.task_eval is not None:
assert 0 <= args.task_eval < args.num_tasks, "Not a valid task idx"
print(f"Task {args.set}: {args.task_eval}")
model.apply(lambda m: setattr(m, "task", args.task_eval))
assert hasattr(
data_loader, "update_task"
), "[ERROR] Need to implement update task method for use with multitask experiments"
data_loader.update_task(args.task_eval)
optimizer = get_optimizer(args, model)
lr_scheduler = schedulers.get_policy(args.lr_policy or "cosine_lr")(
optimizer, args
)
# Train and do inference and normal for args.epochs epcohs.
best_acc1 = 0.0
for epoch in range(0, args.epochs):
lr_scheduler(epoch, None)
train(
model,
writer,
data_loader.train_loader,
optimizer,
criterion,
epoch,
task_idx=args.task_eval,
data_loader=None,
)
curr_acc1 = test(
model,
writer,
criterion,
data_loader.val_loader,
epoch,
task_idx=args.task_eval,
)
if curr_acc1 > best_acc1:
best_acc1 = curr_acc1
utils.write_result_to_csv(
name=f"{args.name}~set={args.set}~task={args.task_eval}",
curr_acc1=curr_acc1,
best_acc1=best_acc1,
save_dir=run_base_dir,
)
if args.save:
torch.save(
{
"epoch": args.epochs,
"arch": args.model,
"state_dict": model.state_dict(),
"best_acc1": best_acc1,
"curr_acc1": curr_acc1,
"args": args,
},
run_base_dir / "final.pt",
)
return best_acc1
# Iterate through all tasks.
for idx in range(args.num_tasks or 0):
print(f"Task {args.set}: {idx}")
# Tell the model which task it is trying to solve -- in Scenario NNs this is ignored.
model.apply(lambda m: setattr(m, "task", idx))
# Update the data loader so that it returns the data for the correct task, also done by passing the task index.
assert hasattr(
data_loader, "update_task"
), "[ERROR] Need to implement update task method for use with multitask experiments"
data_loader.update_task(idx)
# Clear the grad on all the parameters.
for p in model.parameters():
p.grad = None
# Make a list of the parameters relavent to this task.
params = []
for n, p in model.named_parameters():
if not p.requires_grad:
continue
split = n.split(".")
if split[-2] in ["scores", "s", "t"] and (
int(split[-1]) == idx or (args.trainer and "nns" in args.trainer)
):
params.append(p)
# train all weights if train_weight_tasks is -1, or num_tasks_learned < train_weight_tasks
if (
args.train_weight_tasks < 0
or num_tasks_learned < args.train_weight_tasks
):
if split[-1] == "weight" or split[-1] == "bias":
params.append(p)
# train_weight_tasks specifies the number of tasks that the weights are trained for.
# e.g. in SupSup, train_weight_tasks = 0. in BatchE, train_weight_tasks = 1.
# If training weights, use train_weight_lr. Else use lr.
lr = (
args.train_weight_lr
if args.train_weight_tasks < 0
or num_tasks_learned < args.train_weight_tasks
else args.lr
)
# get optimizer, scheduler
if args.optimizer == "adam":
optimizer = optim.Adam(params, lr=lr, weight_decay=args.wd)
elif args.optimizer == "rmsprop":
optimizer = optim.RMSprop(params, lr=lr)
else:
optimizer = optim.SGD(
params, lr=lr, momentum=args.momentum, weight_decay=args.wd
)
train_epochs = args.epochs
if args.no_scheduler:
scheduler = None
else:
scheduler = CosineAnnealingLR(optimizer, T_max=train_epochs)
# Train on the current task.
for epoch in range(1, train_epochs + 1):
train(
model,
writer,
data_loader.train_loader,
optimizer,
criterion,
epoch,
idx,
data_loader,
)
# Required for our PSP implementation, not used otherwise.
utils.cache_weights(model, num_tasks_learned + 1)
curr_acc1[idx] = test(
model, writer, criterion, data_loader.val_loader, epoch, idx
)
if curr_acc1[idx] > best_acc1[idx]:
best_acc1[idx] = curr_acc1[idx]
if scheduler:
scheduler.step()
if (
args.iter_lim > 0
and len(data_loader.train_loader) * epoch > args.iter_lim
):
break
utils.write_result_to_csv(
name=f"{args.name}~set={args.set}~task={idx}",
curr_acc1=curr_acc1[idx],
best_acc1=best_acc1[idx],
save_dir=run_base_dir,
)
# Save memory by deleting the optimizer and scheduler.
del optimizer, scheduler, params
# Increment the number of tasks learned.
num_tasks_learned += 1
# If operating in NNS scenario, get the number of tasks learned count from the model.
if args.trainer and "nns" in args.trainer:
model.apply(
lambda m: setattr(
m, "num_tasks_learned", min(model.num_tasks_learned, args.num_tasks)
)
)
else:
model.apply(lambda m: setattr(m, "num_tasks_learned", num_tasks_learned))
# TODO series of asserts with required arguments (eg num_tasks)
# args.eval_ckpts contains values of num_tasks_learned for which testing on all tasks so far is performed.
# this is done by default when all tasks have been learned, but you can do something like
# args.eval_ckpts = [5,10] to also do this when 5 tasks are learned, and again when 10 tasks are learned.
if num_tasks_learned in args.eval_ckpts or num_tasks_learned == args.num_tasks:
avg_acc = 0.0
avg_correct = 0.0
# Settting task to -1 tells the model to infer task identity instead of being given the task.
model.apply(lambda m: setattr(m, "task", -1))
# an "adaptor" is used to infer task identity.
# args.adaptor == gt implies we are in scenario GG.
# This will cache all of the information the model needs for inferring task identity.
if args.adaptor != "gt":
utils.cache_masks(model)
# Iterate through all tasks.
adapt = getattr(adaptors, args.adaptor)
for i in range(num_tasks_learned):
print(f"Testing {i}: {args.set} ({i})")
# model.apply(lambda m: setattr(m, "task", i))
# Update the data loader so it is returning data for the right task.
data_loader.update_task(i)
# Clear the stored information -- memory leak happens if not.
for p in model.parameters():
p.grad = None
for b in model.buffers():
b.grad = None
torch.cuda.empty_cache()
adapt_acc = adapt(
model,
writer,
data_loader.val_loader,
num_tasks_learned,
i,
)
adapt_acc1[i] = adapt_acc
avg_acc += adapt_acc
torch.cuda.empty_cache()
utils.write_adapt_results(
name=args.name,
task=f"{args.set}_{i}",
num_tasks_learned=num_tasks_learned,
curr_acc1=curr_acc1[i],
adapt_acc1=adapt_acc,
task_number=i,
)
writer.add_scalar(
"adapt/avg_acc", avg_acc / num_tasks_learned, num_tasks_learned
)
utils.clear_masks(model)
torch.cuda.empty_cache()
if args.save:
torch.save(
{
"epoch": args.epochs,
"arch": args.model,
"state_dict": model.state_dict(),
"best_acc1": best_acc1,
"curr_acc1": curr_acc1,
"args": args,
},
run_base_dir / "final.pt",
)
return adapt_acc1
# TODO: Remove this with task-eval
def get_optimizer(args, model):
for n, v in model.named_parameters():
if v.requires_grad:
print("<DEBUG> gradient to", n)
if not v.requires_grad:
print("<DEBUG> no gradient to", n)
if args.optimizer == "sgd":
parameters = list(model.named_parameters())
bn_params = [v for n, v in parameters if ("bn" in n) and v.requires_grad]
rest_params = [v for n, v in parameters if ("bn" not in n) and v.requires_grad]
optimizer = torch.optim.SGD(
[
{"params": bn_params, "weight_decay": args.wd,},
{"params": rest_params, "weight_decay": args.wd},
],
args.lr,
momentum=args.momentum,
weight_decay=args.wd,
nesterov=False,
)
elif args.optimizer == "adam":
optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
lr=args.lr,
weight_decay=args.wd,
)
elif args.optimizer == "rmsprop":
optimizer = torch.optim.RMSprop(
filter(lambda p: p.requires_grad, model.parameters()), lr=lr
)
return optimizer
if __name__ == "__main__":
main()