-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
273 lines (238 loc) · 6.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# import nltk
# import numpy as np
# from nltk.stem.lancaster import LancasterStemmer
# from pandas.core.dtypes.common import classes
#
# stemmer = LancasterStemmer()
#
#
#
# import numpy
# import tflearn
# import tensorflow
# import random
# import json
#
# with open("intents.json") as file:
# data= json.load(file)
#
# words = []
# labels = []
# docs_x = []
# docs_y = []
#
# for intent in data["intents"]:
# for pattern in intent["patterns"]:
# wrds = nltk.word_tokenize(pattern)
# words.extend(wrds)
# docs_x.append(wrds)
# docs_y.append(intent["tag"])
#
# if intent["tag"] in labels:
# labels.append(intent["tag"])
#
# words = [stemmer.stem(w.lower())for w in words if w != "?"]
# words = sorted(list(set(words)))
#
# labels = sorted(labels)
#
# training = []
# output = []
# out_empty = [0 for _ in range(len(labels))]
#
# for x,doc in enumerate(docs_x):
# bag = []
# wrds = [stemmer.stem(w) for w in doc]
# for w in words:
# if w in wrds:
# bag.append(1)
# else:
# bag.append(0)
# output_row = out_empty[:]
# output_row[labels.index(docs_y[x])] = 1
#
# training.append(bag)
# output.append(output_row)
#
#
# training = numpy.array(training)
# output = np.array(output)
# import nltk
# # nltk.download()
# from nltk.stem.lancaster import LancasterStemmer
# stemmer = LancasterStemmer()
#
# import numpy
# import tflearn
# import tensorflow
# import random
# import json
#
#
# with open("intents.json") as file:
# data = json.load(file)
#
#
#
# words = []
# labels = []
# docs_x = []
# docs_y = []
#
# for intent in data["intents"]:
# for pattern in intent["patterns"]:
# wrds = nltk.word_tokenize(pattern)
# words.extend(wrds)
# docs_x.append(wrds)
# docs_y.append(intent["tag"])
#
# if intent["tag"] not in labels:
# labels.append(intent["tag"])
#
# words = [stemmer.stem(w.lower()) for w in words if w != "?"]
# words = sorted(list(set(words)))
#
# labels = sorted(labels)
#
# training = []
# output = []
#
# out_empty = [0 for _ in range(len(labels))]
#
# for x, doc in enumerate(docs_x):
# bag = []
#
# wrds = [stemmer.stem(w.lower()) for w in doc]
#
# for w in words:
# if w in wrds:
# bag.append(1)
# else:
# bag.append(0)
#
# output_row = out_empty[:]
# output_row[labels.index(docs_y[x])] = 1
#
# training.append(bag)
# output.append(output_row)
#
#
# training = numpy.array(training)
# output = numpy.array(output)
#
# from tensorflow.python.framework import ops
# ops.reset_default_graph()
# # tensorflow.reset_default_graph()
#
# net = tflearn.input_data(shape=[None, len(training[0])])
# net = tflearn.fully_connected(net, 8)
# net = tflearn.fully_connected(net, 8)
# net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
# net = tflearn.regression(net)
#
# model = tflearn.DNN(net)
# model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
# model.save("model.tflearn")
# tensorflow.reset_default_graph()
# network model with probability (softmax)
# in input 45 layer
# in hiden layer is two layer = 8 cell
# in output are 6 layer return value probability = tag in file json = labels(where is come from)
# net = tflearn.input_data(shape=[None,len(training[0])])
# net = tflearn.fully_connected(net,8)
# layer in hidden layer are 8 cell
# net = tflearn.fully_connected(net,8)
# net = tflearn.fully_connected(net,len(output[0]),activation="softmax")
# net = tflearn.regression(net)
# finish a neural network after that training model
# model = tflearn.DNN(net)
# model.fit(training,output, n_epoch=1000, batch_size=8,show_metric=True)
# training data
# model.save("model.tflearn")
# last one coding
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
import numpy
import tflearn
import tensorflow
import random
import json
import pickle
with open("intents.json") as file:
data = json.load(file)
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w.lower()) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
from tensorflow.python.framework import ops
ops.reset_default_graph()
# tensorflow.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load("model.tflearn")
except:
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
model.save("model.tflearn")
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return numpy.array(bag)
def chat():
print("Start talking with the bot (type quit to stop)!")
while True:
inp = input("You: ")
if inp.lower() == "quit":
break
results = model.predict([bag_of_words(inp, words)])
results_index = numpy.argmax(results)
tag = labels[results_index]
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
print(random.choice(responses))
chat()