% What #[derive(Add)] generates
The derived Add
implementation will allow two structs from the same type to be
added together. This done by adding their respective fields together and
creating a new struct with those values.
For enums each variant can be added in a similar way to another instance of that
same variant. There's one big difference however, it returns a
Result<EnumType>
, because an error is returned when to different variants are
added together.
When deriving Add
for a tuple struct with two fields like this:
# #[macro_use] extern crate derive_more;
# fn main(){}
#[derive(Add)]
struct MyInts(i32, i32);
Code like this will be generated:
# struct MyInts(i32, i32);
impl ::core::ops::Add for MyInts {
type Output = MyInts;
fn add(self, rhs: MyInts) -> MyInts {
MyInts(self.0.add(rhs.0), self.1.add(rhs.1))
}
}
The behaviour is similar with more or less fields.
When deriving Add
for a regular struct with two fields like this:
# #[macro_use] extern crate derive_more;
# fn main(){}
#[derive(Add)]
struct Point2D {
x: i32,
y: i32,
}
Code like this will be generated:
# struct Point2D {
# x: i32,
# y: i32,
# }
impl ::core::ops::Add for Point2D {
type Output = Point2D;
fn add(self, rhs: Point2D) -> Point2D {
Point2D {
x: self.x.add(rhs.x),
y: self.y.add(rhs.y),
}
}
}
The behaviour is similar for more or less fields.
There's a big difference between the code that is generated for the two struct
types and the one that is generated for enums. The code for enums returns
Result<EnumType>
instead of an EnumType
itself. This is because adding an
enum to another enum is only possible if both are the same variant. This makes
the generated code much more complex as well, because this check needs to be
done. For instance when deriving Add
for an enum like this:
# #[macro_use] extern crate derive_more;
# fn main(){}
#[derive(Add)]
enum MixedInts {
SmallInt(i32),
BigInt(i64),
TwoSmallInts(i32, i32),
NamedSmallInts { x: i32, y: i32 },
UnsignedOne(u32),
UnsignedTwo(u32),
Unit,
}
Code like this will be generated:
# enum MixedInts {
# SmallInt(i32),
# BigInt(i64),
# TwoSmallInts(i32, i32),
# NamedSmallInts { x: i32, y: i32 },
# UnsignedOne(u32),
# UnsignedTwo(u32),
# Unit,
# }
impl ::core::ops::Add for MixedInts {
type Output = Result<MixedInts, &'static str>;
fn add(self, rhs: MixedInts) -> Result<MixedInts, &'static str> {
match (self, rhs) {
(MixedInts::SmallInt(__l_0), MixedInts::SmallInt(__r_0)) => {
Ok(MixedInts::SmallInt(__l_0.add(__r_0)))
}
(MixedInts::BigInt(__l_0), MixedInts::BigInt(__r_0)) => {
Ok(MixedInts::BigInt(__l_0.add(__r_0)))
}
(MixedInts::TwoSmallInts(__l_0, __l_1), MixedInts::TwoSmallInts(__r_0, __r_1)) => {
Ok(MixedInts::TwoSmallInts(__l_0.add(__r_0), __l_1.add(__r_1)))
}
(MixedInts::NamedSmallInts { x: __l_0, y: __l_1 },
MixedInts::NamedSmallInts { x: __r_0, y: __r_1 }) => {
Ok(MixedInts::NamedSmallInts {
x: __l_0.add(__r_0),
y: __l_1.add(__r_1),
})
}
(MixedInts::UnsignedOne(__l_0), MixedInts::UnsignedOne(__r_0)) => {
Ok(MixedInts::UnsignedOne(__l_0.add(__r_0)))
}
(MixedInts::UnsignedTwo(__l_0), MixedInts::UnsignedTwo(__r_0)) => {
Ok(MixedInts::UnsignedTwo(__l_0.add(__r_0)))
}
(MixedInts::Unit, MixedInts::Unit) => Err("Cannot add() unit variants"),
_ => Err("Trying to add mismatched enum variants"),
}
}
}
Also note the Unit type that throws an error when adding it to itself.