A clean and robust Pytorch implementation of Categorical DQN(C51) :
Render | Training curve |
---|---|
Other RL algorithms by Pytorch can be found here.
gymnasium==0.29.1
matplotlib==3.8.2
numpy==1.26.1
pytorch==2.1.0
python==3.11.5
python main.py
where the default enviroment is 'CartPole'.
If you want to train on different enviroments, just run:
python main.py --EnvIdex 1
The --EnvIdex can be set to be 0 and 1, where
'--EnvIdex 0' for 'CartPole-v1'
'--EnvIdex 1' for 'LunarLander-v2'
Note: if you want to play on LunarLander, you need to install box2d-py first. You can install box2d-py via: pip install gymnasium[box2d]
python main.py --EnvIdex 0 --render True --Loadmodel True --ModelIdex 60 # Play with CartPole
python main.py --EnvIdex 1 --render True --Loadmodel True --ModelIdex 320 # Play with LunarLander
You can use the tensorboard to record anv visualize the training curve.
- Installation (please make sure Pytorch is installed already):
pip install tensorboard
pip install packaging
- Record (the training curves will be saved at '\runs'):
python main.py --write True
- Visualization:
tensorboard --logdir runs
For more details of Hyperparameter Setting, please check 'main.py'