forked from lballabio/QuantLib-SWIG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintegrals.i
216 lines (182 loc) · 5.58 KB
/
integrals.i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/*
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
Copyright (C) 2013, 2022 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<[email protected]>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_segment_integral_i
#define quantlib_segment_integral_i
%include common.i
%include types.i
%include functions.i
%{
using QuantLib::SegmentIntegral;
using QuantLib::TrapezoidIntegral;
using QuantLib::Default;
using QuantLib::MidPoint;
using QuantLib::SimpsonIntegral;
using QuantLib::GaussKronrodAdaptive;
using QuantLib::GaussKronrodNonAdaptive;
using QuantLib::GaussLobattoIntegral;
using QuantLib::GaussLaguerreIntegration;
using QuantLib::GaussHermiteIntegration;
using QuantLib::GaussJacobiIntegration;
using QuantLib::GaussHyperbolicIntegration;
using QuantLib::GaussLegendreIntegration;
using QuantLib::GaussChebyshevIntegration;
using QuantLib::GaussChebyshev2ndIntegration;
using QuantLib::GaussGegenbauerIntegration;
using QuantLib::TanhSinhIntegral;
using QuantLib::ExpSinhIntegral;
%}
%define INTEGRATION_METHODS
Size numberOfEvaluations() const;
%extend {
#if defined(SWIGPYTHON)
Real __call__(PyObject* pyFunction, Real a, Real b) {
UnaryFunction f(pyFunction);
return (*self)(f, a, b);
}
#elif defined(SWIGJAVA) || defined(SWIGCSHARP)
Real calculate(UnaryFunctionDelegate* f, Real a, Real b) {
return (*self)(UnaryFunction(f), a, b);
}
#endif
}
%enddef
class SegmentIntegral {
public:
SegmentIntegral(Size intervals);
INTEGRATION_METHODS;
};
template <class IntegrationPolicy>
class TrapezoidIntegral {
public:
TrapezoidIntegral(Real accuracy, Size maxIterations);
INTEGRATION_METHODS;
};
%template(TrapezoidIntegralDefault) TrapezoidIntegral<Default>;
%template(TrapezoidIntegralMidPoint) TrapezoidIntegral<MidPoint>;
class SimpsonIntegral {
public:
SimpsonIntegral(Real accuracy, Size maxIterations);
INTEGRATION_METHODS;
};
class GaussKronrodAdaptive {
public:
GaussKronrodAdaptive(Real tolerance,
Size maxFunctionEvaluations = Null<Size>());
INTEGRATION_METHODS;
};
class GaussKronrodNonAdaptive {
public:
GaussKronrodNonAdaptive(Real absoluteAccuracy,
Size maxEvaluations,
Real relativeAccuracy);
INTEGRATION_METHODS;
};
class GaussLobattoIntegral {
public:
GaussLobattoIntegral(Size maxIterations,
Real absAccuracy,
Real relAccuracy = Null<Real>(),
bool useConvergenceEstimate = true);
INTEGRATION_METHODS;
};
%{
using QuantLib::GaussianQuadrature;
%}
class GaussianQuadrature {
private:
GaussianQuadrature();
public:
Size order() const;
%extend {
Array weights() {
return self->weights();
}
Array x() {
return self->x();
}
#if defined(SWIGPYTHON)
Real __call__(PyObject* pyFunction) {
UnaryFunction f(pyFunction);
return (*self)(f);
}
#elif defined(SWIGJAVA) || defined(SWIGCSHARP)
Real calculate(UnaryFunctionDelegate* f) {
return (*self)(UnaryFunction(f));
}
#endif
}
};
class GaussLaguerreIntegration: public GaussianQuadrature {
public:
GaussLaguerreIntegration(Size n, Real s = 0.0);
};
class GaussHermiteIntegration: public GaussianQuadrature {
public:
GaussHermiteIntegration(Size n, Real mu = 0.0);
};
class GaussJacobiIntegration: public GaussianQuadrature {
public:
GaussJacobiIntegration(Size n, Real alpha, Real beta);
};
class GaussHyperbolicIntegration: public GaussianQuadrature {
public:
GaussHyperbolicIntegration(Size n);
};
class GaussLegendreIntegration: public GaussianQuadrature {
public:
GaussLegendreIntegration(Size n);
};
class GaussChebyshevIntegration: public GaussianQuadrature {
public:
GaussChebyshevIntegration(Size n);
};
class GaussChebyshev2ndIntegration: public GaussianQuadrature {
public:
GaussChebyshev2ndIntegration(Size n);
};
class GaussGegenbauerIntegration: public GaussianQuadrature {
public:
GaussGegenbauerIntegration(Size n, Real lambda);
};
class TanhSinhIntegral {
public:
explicit TanhSinhIntegral(
Real relTolerance = std::sqrt(std::numeric_limits<Real>::epsilon()),
Size maxRefinements = 15,
Real minComplement = std::numeric_limits<Real>::min() * 4
);
INTEGRATION_METHODS;
};
class ExpSinhIntegral {
public:
explicit ExpSinhIntegral(
Real relTolerance = std::sqrt(std::numeric_limits<Real>::epsilon()),
Size maxRefinements = 9
);
%extend {
#if defined(SWIGPYTHON)
Real integrate(PyObject* pyFunction) {
UnaryFunction f(pyFunction);
return self->integrate(f);
}
#elif defined(SWIGJAVA) || defined(SWIGCSHARP)
Real integrate(UnaryFunctionDelegate* f) {
return self->integrate(UnaryFunction(f));
}
#endif
}
INTEGRATION_METHODS;
};
#endif