-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDirectionalMerge.py
378 lines (337 loc) · 52.3 KB
/
DirectionalMerge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# -*- coding: utf-8 -*-
"""
DirectionalMerge.py
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Leandro França'
__date__ = '2021-02-13'
__copyright__ = '(C) 2021, Leandro França'
from qgis.PyQt.QtCore import QCoreApplication
from qgis.core import (QgsApplication,
QgsProcessingParameterVectorLayer,
QgsGeometry,
QgsFeature,
QgsProcessing,
QgsProcessingParameterField,
QgsProcessingParameterBoolean,
QgsProcessingParameterEnum,
QgsProcessingParameterNumber,
QgsFeatureSink,
QgsProcessingException,
QgsProcessingAlgorithm,
QgsProcessingParameterFeatureSource,
QgsProcessingParameterFeatureSink)
from math import atan2, degrees, fabs
class DirectionalMerge(QgsProcessingAlgorithm):
LOC = QgsApplication.locale()
def translate(self, string):
return QCoreApplication.translate('Processing', string)
def tr(self, *string):
# Traduzir para o portugês: arg[0] - english (translate), arg[1] - português
if self.LOC == 'pt':
if len(string) == 2:
return string[1]
else:
return self.translate(string[0])
else:
return self.translate(string[0])
def createInstance(self):
return DirectionalMerge()
def name(self):
return 'directionalmerge'
def displayName(self):
return self.tr('Merge lines in direction', 'Mesclar linhas na direção')
def group(self):
return self.tr('LF Vector', 'LF Vetor')
def groupId(self):
return 'lf_vector'
def shortHelpString(self):
txt_en = 'This algorithm merges lines that touch at their starting or ending points and has the same direction (given a tolerance in degrees). <p>For the attributes can be considered:</p>1 - merge lines that have the same attributes; or</li><li>2 - keep the attributes of the longest line.</li>'
txt_pt = 'Este algoritmo mescla linhas que se tocam nos seus pontos inicial ou final e tem a mesma direção (dada uma tolerância em graus).<p>Para os atributos pode ser considerado:</p><li>1 - mesclar linhas que tenham os mesmos atributos; ou</li><li>2 - manter os atributos da linha maior.</li>'
dic_BW = {'face': 'iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAYAAAByDd+UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMMwAADDMBUlqVhwAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAIUSURBVEiJvZa9quJAGIbfMfEYTUSUQAqLYOnehJobsBTlHLbRQtKKlY3lObegxRa7pRdg7y0saiuoKAErMZif2Squ2eTEOCfsC1Pk+3uYb2YyQwCg1+u9UUqHAKoAOCQrB8ASwPt0Ov1JdF3/bprmj4QhoXp5eXnjTdMcUEr/Bw+WZQ15Smn1q4UIIZBlGaIoghBys2+3W1yv19u367rfeAAc6ww5jkOz2USj0YAoigH/aDTCbrfzpfCUUrAC2+02NE2LjPm3NjNQkiTU6/WHsFAgi1RVRSqVCthd171BwmozA/P5fMA2n88xm81g2zYAwHGccCAL9H43elosFrhcLpE5zMCwHMdxImtRSp8DptNpZDIZAIAgCAG/IAi+42Ga5q29nkin06FxgZqmodvtxooFgPF4jPV67bM9NcNnW384HJI7h49kWRZOp9PXgOfzGfv9HgCQy+VQKBR8fsMwYFkWAOB4PMJ13UAN0mq1Yq/hfVytVoOu6z7/YDDAZrP5Wzzk6CR6LOLEJLqGcWrxYX2OW5wJmOQOjQX0ApOERgIrlQoTUJblgK1cLodeWZ4IIeDDngZx5P1T75XNZiFJUmQeTyl1wPAW/awrD7rlpDiOW3qL/cz4DBY1CCG/U4qifDw7O1YpivJBAGAymbwahjG0bbtKKeXjJJdKJaiq6rOtVqvAjU8IsTmOWxaLxfd+v//rD1H2cZ8dKhk8AAAAAElFTkSuQmCC', 'github': 'iVBORw0KGgoAAAANSUhEUgAAAB0AAAAdCAYAAABWk2cPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMOwAADDsBdtCd4gAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAW2SURBVEiJrVZdaBNZGD33TpL+RosxxWZSu7ZpDYQ1CPVBUSws2Cq6sPWvFW1BQcyKaOnDwvqgQvFh6ypoFn3xUd1OygrarK6UKoq7FAqFVWulKba1rtVgW5PWZjqZ++2DTjY/av3ZA8Mw3537ne+c+829w/ARIKKFQ0NDG/v7+zeEQqGysbGxopmZGVteXt5Lh8PxrLy8fNDtdgdlWe5gjL2cKx/70GAkEqkIBoMtiqLU9vX1SVNTUxBCQJIko5g3SRiD1WqF1+vV6+rqfqupqTmcnZ098EmkRGS5cuXKTydOnPh+cHDQzDlPHgPnPEGYSMQYhBBgjMHtdmuHDx/+paqq6gfG2OycpJFIxHbkyJH2QCBQ9SEX5gLnHHv27Pmzubm5Nj8//3nymCn5YWxsrLCxsfGv7u7uUkmSMtR8CoQQOHfu3KqRkZG70Wh0pdVqDWeQEpF569atSnd3d6lhn67rifX7GBhFCiHAOYfJZMK1a9fKOOeXiegbxpgKAImMmqad7Ojo2A68WZ/169fj4MGDyM3NxdDQEDRNA2MMRAQhRILEWEcAsFqt2LZtG/bt24eJiQmMjo6CMYZHjx4tNplMedevX/8DeLumd+7cqdixY8d9IjIzxqBpGi5cuIC1a9cCAEZGRuD3+6GqKjweDwoLC2E2m6GqKl68eIF79+7Bbrdj//79sNvtYIxBURQ0NzeDMQbGGLKysrT29nbP8uXLB0wA0Nra2kJEZqN6zjkWLFgAo2uXLFmC1tbWhCLjnm6t0cEAYLfbEzEAiMVi5jNnzrQA2M47Ozttvb293xmTjZfGx8cTVQJvujH5OR3J73HOMT4+nhJnjOHmzZube3p6FvJgMPitECK5oZCVlYX8/Pz3d8wcEEIgNzcXFoslpShVVaXOzs4NksVi+XFyctKTTFpfX4+Ghob3qpoLRASXy4W+vj6EQqEUtZqmxfmTJ09cyRMkSUJ9ff1nkRkwLN65c2fiMzLug4ODX3MhRFHyJjBv3jyUlJR80cYAvFFVWlqKnJyclHgsFnOYdF1fkGyjyWSCJEmfbS3wnyqLxZJoQANCiDwOIOUoisVieP369f+iNBKJQNO09FzTnHP+LDkyNTWF4eHhLyYUQiAUCkHTtJQxk8n0D8/Ozh5MnxQMBqHr+hcTX716NcVaxhjmz5//N3e5XL+nW6koCoaHhz/bYiJCb28vbty4kRIXQmDp0qUdfPXq1VeJKG5s5gAwPT2NvXv34vHjxymJPhYPHz6Ez+eDqqrpxejV1dW/MwAoKytTVFXd6vV6sWbNGly+fBmjo6Ow2WzYtWsXamtrUVxcnOjE9D8JXdcTa9je3o6LFy9ienoayUIAoKCgQLl///52AIDP5yuVZVldtmwZBYNBGhgYoI0bN5IsyyTLMpWUlNCqVauoq6uL4vE4paOtrY0qKytp8eLF5HQ6SZZlcjqdKZfD4Zg9evSoC0j6XfF4PKdevXp1yGKx4NKlS4jH4/D5fAiHw+Cco7CwELdu3YLVak1pDiJCOBxGVVUVotFoip3JShctWnSyp6enGUg6xFtaWrpu3769Rtf1r54+fYrdu3dj5cqVKCoqgsfjQWNjI9xud8ZJwxiD2WxGMBhEOBzGuyBJ0t1jx441BAKBzE/i+PHjdofDEXI6nXTq1CmKRqM0MzNDExMTFIlESNd10nU9w97Z2VmqqanJsPSt1aHTp0/bUxx4B7Ht7Nmz7URUVV5ejhUrViAnJwcFBQU4cOBAxrYGAJqmYdOmTXjw4EGKA5zzu01NTZsPHTr0PJ0nA4qiWLxe70mHwzEryzI5HA6qq6sjTdMyVBpKq6urqbi42FA3W1lZ+bOiKJY5ydLR1NTkqqioaCsqKopv2bLlg6Tr1q0jWZY1j8fzq9GlXwS/328LBAIN8Xi8Tdf1fiKafMs3KYTo13W97fz58w1+v9/2Mfn+BQw/D7WnyIOMAAAAAElFTkSuQmCC', 'instagram': 'iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAYAAAByDd+UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMOQAADDkBCS5eawAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAYPSURBVEiJlZZNaBRbFsd/VXXrI23sDtrRCQkkGkleFHlKiEj8wIgTF0Igs4nzcDFjCOqmdwrPjczmCW4MuDEoM7pQlw6unPEZhRCVKL6gsUmItKhh8tV+JN2d/qiuurNwbk118h7MHLjU17nnf//3/s85pfEfu3z5clsymfxRSvl7TdM2Syk1KSVhU8/q6vt+cJVSIqUM7n3fl8CclPLn3bt3/3T+/PlJAA3g3Llzf5ibm7sFOJqmVQQOP68G/a0RNk3TAApNTU1/vHTp0t+1oaGh7x49evQL4CiAMFgY5NdYhv1+BSj8nO/p6fle6+vr+1upVPrTaucNGzZw5MgR2traiMfj2LaNYRjoul4RyPd9PM+jUCiQTqdJJpMMDw+zvLy8BjgSifxV6+3tnZFS1ofBuru7GRgYwDCMNSv/X6xUKnH16lVGR0crQKWUMwL4XXjVnZ2dnD59GiklDx48YHR0lPn5eQqFAp7nBaJQpus6hmEQiUSoq6vjwIEDHDp0iEQiQTab5dWrV+GdqzO2b9/+F03T0DQNIQQXLlzAcRwGBwe5d+8e6XSaQqFAuVxeA+j7Pr7v47ou+XwegJGRET5//kx7ezutra3cv38/DPiNmjr4HTt2EIvFSCaTPH36NHD8DeWhaRq6rqPrOj09PVy5coWzZ8/y8OFD3r9/z6ZNm2hqaqoQnwgf6rZt2wAYHx+vOGx1H4vFOHjwIFu2bMH3fVKpFCMjI+RyOTZu3AgQXMfHx2lsbKS5uZl3794FcYS60TSNWCwGwKdPn9YIoauri5MnT2KaZvBu//799PX1MTQ0xJ07d0ilUrx58wZd1/ny5QsA0Wi0Io5QYAC2bQPfVBZmt3fvXk6dOgXA48ePefHiRfB+3759JBIJLl68yMjISBCrWCxWxAy2NIyu0sDzvGCiEIL+/n4ABgcHefbsWeD//PlzkskkAwMDDAwMkEgkAj14ngdQkbeapqErhuGkNgwDy7KwbZtdu3axfv16JiYmGBsbW1NBhoeHSaVSxONxmpubAyaqzoYBpZTopmli2zaO4wQMLcuiqqoKx3FobGwEYGpqCsdxsG0b0zSDQFJKJiYmAGhoaGC1KSUHO+Y4DkIIdF1HCBEAOo5TMXHdunXYto2UEs/zgrwsl8uBr+u6awBVSqkmoKtVO44TrNo0zYDN7OwsAO3t7UQiEWzbDvwtyyISibBnzx4Apqen1wCGTdd1dDU5DBgOuri4yOzsLLW1tRw/fpyqqips28ayLKqrqzlz5gw1NTUkk0kWFhYqGIUZKhOqC4QLtWKn+tvdu3fp7++no6OD1tZWpqamAGhra6O6uppsNsuNGzcwTRPXdZFSBvlaLpcrWpiwbTsowErKkUgEy7KCFWYyGW7evMmxY8eor6+no6MjWNzbt2+5desW2Ww2mOO6LlVVVQAUCoVKhqZpBqLJ5XIAxOPxCkAFevv2bWpqaqitrcXzPD5+/MjCwgKu62KaZkXXr6urA/5btRRLYVlWsKXz8/MAtLa28vLlyyCXVBDP88hkMnz9+pVyuUy5XA62LgxmGEYgpMnJyUqGlmUhhMAwDHK5HOl0mng8TldXF2NjYxU/RyoNXNelVCpVCEMNXdc5ceIE0WiU169fk06n14jGM03TMAwDIQRjY2McPXqUlpYWGhoamJmZIZfL4bourusGoGookQghqKmpYefOncRiMTKZDNeuXVv9b+QJx3HmTNOstywL0zTxfZ8nT54EJa2lpYX/11KpFNevX2dpaWl1m/uXiMVi/wT+rEqWEALf9xkfHycajRKNRlFKBsL/nQHLUqlEPp9ncXGRyclJPnz4QLFYDOqz0sLmzZv/oaVSqdbp6elfTNOsMk0TtbXhtqWAFIg6w2KxSKFQYGVlhVwuRzabJZPJkM/ng2+FQgHXddE0bSWRSHwvtm7dOpVMJn9YWlq6I4RwVIqEC+5qQCUy5RNWsTpr13XDcfLd3d0/dHZ2vg0iptPp7+bm5n7UNO2IEKJO+2Zr0iKs1GKxSLFYJJfLsbKyQiaTYXl5WQ25srIya9v2z729vT8dPnx4CuDfBIhl1RKmcgQAAAAASUVORK5CYII=', 'lattes': 'iVBORw0KGgoAAAANSUhEUgAAABgAAAAdCAYAAACwuqxLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOEwAADhMBVGlxVAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAd/SURBVEiJlVZ7TFTZHf7ua+bOzJ0XwyLDIDLy1oFVg7E2RmPMUmxNscaiQqON0mA0YYORtG7ShFTjxk37h8bQpVmN2d2EdnzABjF2C/VRX2BFVBAyQJPOiEuBGWa4zMy9d+7c0z/Wob5i7C+5ycm5Od/3+53z/b5zKLwUhBD9/fv3a7q7u7cODg7+QBRFi6qq3MzMzCxN036DwfA4Kyure+XKlX9ramqawnsElRoEg8Hlx44du9DX11fMcRxSH0VRCAaDAACO46BpGliWJYSQRzzPX6yoqPjq8OHD/34nQSgUymlqavrn+Pj4B7IsI5FIgBACvV4Po9EISZKgadrDrKysL/Lz8+/yPD/c3NwsvU8FLAC0tLR8pqrqBy6XC4qiQFEUSJKE2dlZxGIx4vF4PmltbT1BURR5H9BXKhgYGFh+/Pjxx3q9nibk+/UMw4AQgtnZWQiC8FlbW9uv/1/ghQouXrxYJYoiPTMzAwDQ6/Uwm80wGo3gOE7au3fv8ba2NkxOTmacO3fuN0NDQyv1er1aUlLyoKqq6ov8/Pyxd1awefPmv87Pz1cAgKZpSCQSMBgMcDgckGX5H11dXevD4bC9vr5+wO/358iyDJ1Oh2QyCUKIUlNT88mhQ4f+AACnT5925Ofn6yorK79LEdCqqi4zmUwwmUwwGAzQ6XRQVRWapgHAJABcuXLlF3Nzczkcx4EQAo7jYLFYYLVadZ2dnb8/ceLEAQDIyMgIt7S0eG/dumVeIDCZTBae56HT6cAwDFiWhcViSW2TDgDC4bDdYDCAoijQNA2DwQCbzYa0tDRYrVbcvHnz02vXrgnV1dVJQRDYo0ePnieE0ABAC4IgpDLneR4OhwPp6ekQBAFGozEDAMrKyv7udruRTCbBcRyMRiOMRiP0ej1YlgUhxHLnzp01AFBaWjo+Nzf3o507d/4KAGiLxRLPyclBdnY2cnJy4HK5kJaWBo7jwLJsmdfrZdatW3crHo//ZdOmTeB5HizLQhRFiKIIRVGQTCYhSVIMABwOxzwhBD6f79OrV6+m0UajUfR4PCgpKUFeXh6cTidsNht0Oh1kWTY9efJkFQA0NTX9MhaLtW3duhWPHj3CkydPEA6HEYvFEIvFehmG6QWAYDCYlUwmQdO0vb29fSdLCPlPUVFRZiQSQTAYRCgUWuiBeDyO4eHhnwG473a7JQA1Z86cObdjx469/f39uaFQiFZVtWf37t1H6+vrtXA4bK+trd2oKApYlsXjx49/zjIMM2i1Wj+UZRksywIAUnZht9sRCAR2er3e31ZXVycBYN++fd8C+PZlrd++fRuEEObkyZNfhkIhgRACTdOgqmo+7Xa7ByVJAk3TMJvNcDgcsFqtyMzMhF6vx+TkpLunp2fLu5qJEKI/e/bs152dnVt0Ot2CKaqqmsauX7/+dF9f33WGYYqj0WhRPB4vtNlsRU6nM9/hcOhlWcbo6GgjgG/eBj40NLSioaGh5cKFC2uLi4vBsiw4jkMikQCAZ9S9e/cKent7Py4sLLztcrkelpaW/ouiKMXr9TIAciRJKpyamiosKCg4V1VVJb44SMv169c3dXR07B0bG/sxx3F0X18fsrOz4Xa7EY1GEYvFwHHcRYoQQh08eHDo1KlTJRMTE+jv709OT0/7o9HoaDQa9SeTyaimaTJFUbaRkZG0sbGxoufPn5eIosgSQrB69WooioLe3l7YbDasWLECkiQhHo+jvLz8pyxFUaS1tfXzBw8enCwvLwdN04zf73cPDQ25fT4fpqamMD8/j2XLliEQCGBiYgKyLAMA3G43BEHA8PAwAEBVVSSTyZTNjDqdzi4aACoqKr7s6OiI0jQNnudht9vhcDhgMBjA8zwAQBAErFq1CsXFxXC5XPB4PMjNzUU4HEYgEABFUWAYBvF4HIqiIC8v73fNzc0a/SKTMCGkbXJyEmazGenp6XA6ndDr9UipIhKJgOd55ObmYsmSJSmFYWBgIJUxDAYDJEkCwzBdXq/3awCgU2qoqqr6Y3t7+8I1mZGRkbILMAyDZ8+eIRqNQhRFxGIxzM7OwufzIZFILJigy+WCyWSaPXDgQP2Cm6YGa9eu7X/48GGvLMsL5brdbrhcLmRnZ8NgMCAajSISiSAQCMDv9yOZTC7IdfHixRAEQdy+fftP9uzZM/EGAQBs2LDhdE9PD1RVhaqqC8ZnMpmgaRp8Ph/Gx8chiiIoigJFff8osdlsWLp06diuXbt+2NjYePdlzFcIamtrvZcvX56UJAmyLIOmaTx9+hSjo6OYmJhANBp9o9GcTmdizZo1p44cObKyrq5u8PX/rxBQFKUsWrToTyMjIwiFQohEIjCbzdA0DakHAQDQNA273U48Hs/VhoaGDzs7Oz/euHHj/BvsrxMAwJYtWz7v7u5WUsaXmZm5oO0XV6VcUFDw1f79+8vu3r27ubGxcfhtwKlgX58oLy//rq6u7oKiKDXT09MIBoOgKErhOO7G8uXLv6msrPzztm3bgjdu3HgX7v925W2Tly5dWnv+/Pm29PT0m7m5uV1lZWVXP/roo8h7Ib4W/wW5PFM4xqdwfQAAAABJRU5ErkJggg==', 'linkedin': 'iVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAYAAACpSkzOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAM6QAADOkBmiiHWwAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAJRSURBVEiJ7ZU/aCJREMa/t7soa5LOoGihktZOQSxSWykBIYVaWZ6NVa6wSZ/WI5BGziJypA1CQBLsgkKKgBjFQkEtkouJ+AdxdeeKnHvurXdcXK84uK/amfl4v9m3s++xbrdrury8PGm324dEZMYGxRj7arPZvoRCoSPh/Pz8pFqtftgkYEnmTqeT6PV6xDscjs9EZPpLIADAy8uLS5jP52bGGACA4ziEw2H4/X5IkoSrqytcX1/rBhHRrrCcCAaDCAQCShyJRPD6+oq7uzvdMG458Hg8GoPX69UN0YDG47HGsCqnG5TP50FESjyZTFAoFDYCYvF4nBbDAAB7e3vw+XyQJAnFYhGPj4+6IUQE4eekJEm4vb0F8DaFC1mtVphMb3+BLMtotVogItjtdjgcDhiNRvT7fTw8PKzcbhXI5XIhlUqpOkkkEpjP5zg+PoYg/LCfnp5if38fbrdbteB0OsXFxQVubm5+DTIYDKoiYww8z4OIwPO8qhaLxbCzs6Pp3GAwIBqN4vn5Gff390qe0zj/UKsgywqFQqpY843eo1KphHK5DLPZjIODAxiNRqXmdDqxvb2N4XCoD1Sv13F2dqbEs9kM0WhU5bFYLApo7a1bTOZClUpF49na2lKe1wb1ej1VvGqklwdobdB79R/0j4FkWdYYiEh1dawrAcATgF0AaDabyOVyyuE5HA4xmUwAAJlMRjl2ZFlGo9FQLTQajZDNZiGKouKp1WqL8hNLJpPpwWCQ0N3ybySKYpqLxWJHjLFP399s03riOC4dCAQ+fgMeouMzfwx22gAAAABJRU5ErkJggg==', 'RG': 'iVBORw0KGgoAAAANSUhEUgAAAB4AAAAcCAYAAAB2+A+pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMfwAADH8BdgxfmQAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAM2SURBVEiJtZdLSytJFMd/1dXB+OiQRJEQBEnbPgISJGIQcePKjyBZzoP5AH6OuR9gFjPMznwC1650EbKSy00WPhJ8EMlDtG1M0p2axZCA1871cZM/NDRFnfqdqjrnVJUAODg4+E0IsQ8sA5LRyANKQogve3t7/4hcLvcH8NeIYL5SSv2uAftDHhSl1A/7CCH2dWBxWNBoNIppmgSDQarVKufn53ie59d1RQO0YUBjsRg7OztomkatVmNpaYnNzU2EEH7dNX0YUKUUpmlyd3dHPp9HKcXV1RXT09MIIXyXfihgKSWGYVCpVPoQ27axbXugjS/4HcHh29btdlFKsbq6SiwWA6BQKHB/f/82WEpJKpUiEAi8aA8EAiilaLVaNBoNrq+vabfbr+BCCG5vb3l8fCSTyaDr/ov6KrA8z6NcLtNqtUgkEszPz+M4Ds1mE9u2MQyDjY0Ndnd3mZmZ6ds4jkMoFAKg0Wjw8PCAEIJOp+ML9nWnZ5hIJJBSUiqV+gMIIbAsi3Q6zdbWFoeHh7iuS7lcZn19HcdxsG0by7Ko1+sD93lgcCml6Ha7SClftZ+dnbG4uIhhGMzOznJzc0OlUkHTNBYWFtB1nXq9zunp6aA8/lxUe57H09MThmEwPj7ed+ji4oLLy0uEEHieNyiHPw+WUjI5OYlS6lXE9krmj6DwyaplmiaGYVCtVqnX658Z4u0ZCyGIx+O0223GxsaYm5sjHo9Tq9U4OTn5FPRdYCkly8vLCCEIh8MopSgUCpTLZVzXHR3YdV2Ojo7wPI/t7W1isRjBYPCnoPDOPVZK4XlePz2SySThcHj04J4ajQbFYhEpJZlM5lWOjwwMUCwWaTabRCIR0un08MG9gt/778l1XfL5PJ1OB9M0WVlZGR54amoKy7IIBoPouo5lWYRCof7SNptN8vk83W6XVCrF2toaExMTHwKLXC734vCVUpJOp9F1/cW5rGkapVLpRcGIRqMkk0kikQiO43B8fMzz8/O7wd73Mx90EfArg0opNE178/LwnboaUPID+H2DnPkgFOCbppT68lGrn5VS6k8tm83+DfwKfOX/Z8ao5AFflVK/ZLPZf/8DudZq3wvXLmgAAAAASUVORK5CYII=', 'tweeter': 'iVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAYAAACpSkzOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMMQAADDEBLaRWDgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAK5SURBVEiJpZU7T+NAFEZP4kAePBwZ8TA0EUIRKKIgQhSImnZ/wDYr7Q/barddbRu2QVAQhChAgBQqQClwFEIcx8IYfLdKNk5sJ4GRRh6PPN+Z+90749jZ2VnGsqyfwD6QEREARISocdRcT7dF5AD4lmi327+AL0GCn4QgIhkR+SIiPxIish8k3i/yQVCn7ydEJD0sgjDBMUCZxCg2hQmqqsri4iKKotBoNKhWq741vesSvULpdJrJyUkajcZQy7a2tlheXqa3FQoFzs/PmZubQ9M0Dg8Pu2vivQJLS0sUi0Wy2WykFfl8fgACkEql2N3dJZfLcXFxgaqq/0G9O04mk8RiMba3t8nlcqHRrK6uDkB628TEBDs7O5imORgRgGVZ3Y/z+Tx7e3ssLCz4QMlkkng8HglqNpscHBzw9vbmz1EHVK1WWVtb6wpNTU1RLBZ5f3/HMAzq9TqO40RCAGq1Gq7r+jboK4aZmRmurq7Y3Nz0LVQUBV3X0XV9KATAcZwBy7vlLSJomjbU/1Ha8/PzAMhXdQ8PD5+GABiGEQ1qt9tcXl5+CvL09MTLy8ugdf0T9/f32LbNxsYGs7OzY4Our68DD/oASEQoFApMT0+PDTFNk7u7u0BQPAhULpdxXXds0PHxMZ7nDUBCQa1Wi1KpRKVSwTTNkSAnJyfU6/XQWz4QJCI4jsPj4yOKogyFnJ6ecnt7G3nTd3OUSCSYn59HURRUVUXXdTKZTCTAtm2Ojo585dwP6rx3Qa+vrzSbTdbX11lZWSEWi4UCLMvi5uaGSqWC53mh/67esa/qTNOkXC4DoGka2WyWVCoFgOu6tFotDMPAtu3QXISNA8tbRKjVaoEnPCwPYZZ1nnHP8+ww2Ed7P0RE7LjneX/7ff6ocES0pbiIfBWRP57n2aMAwywKGdsi8ltRlO//AFPkniYXwGRMAAAAAElFTkSuQmCC', 'udemy': 'iVBORw0KGgoAAAANSUhEUgAAAB4AAAAdCAYAAAC9pNwMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMOgAADDoBpJd/BgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAYHSURBVEiJlZdbTFNbGsd/e/cCFtpgxX0sjHgJoepBJcqMl4gGjoYTb5PRYZxEMmq8cI5Oosw8ODG+iJpMHGN0Hsz4QHwwmRgLHpJjqkDqQZ+QWEWisdEIRZoKtAKFFuxt73nQ3aG05pT/2/rW5fd93/rW2msL/Lo0gO727dtlc+fO/cFoNK41mUzzjEajMR6Py6Ojo4FgMPjR4/E8fv369fULFy70A1EgnsHaaSVarVbj3bt3L/b3948pGSgWiylPnz71nj9//kcgBxBnC9Vfv379QG9vb0bAmZJlWXn06NFATU1NFaDPFDrn5s2b/56ampIVRVGCwaDS2NioNDQ0KG1tbbNy4MOHD7H6+vp/AHNmQjQzoXfu3Gnav39/rVarFQCam5vp6ekhHA7jdrtZs2YNBoMhowhyc3PFLVu2fOf3++c6nc5fgFg6sP7atWv/OnjwYK0gCAD4/X5aWlqQZRkARVEoLS3FbDZnmj20Wq2wcePG375582bM5XI5+VJ06uaLdXV1fzh27NhfRfH/9dDe3k40Gk20BUFAp9N9FdLd3c2VK1e4desWk5OTCbvZbBYaGhr+aTQaf6cyVYqhpqbmWnZ2tqAO7u3t5fnz5zO9Z968eWmhIyMj2Gw2vF4vL168wOFwJPWvXLlSe/z48f8ABhWsPXXq1Mmqqqpv1EHhcBibzZZIsSpJksjNzU0LfvjwIeFwONF2uVwoipI05uTJkyskSfo9oBUB/fr16+vUfVUUhaamJnw+X8riJSUlaaHDw8M4nc4kWzAYTNomAIvFIuzYsePvgF7MysqyVFRUFKqdbW1tdHd3pwVYrda09pm1ACDLckrGAKqqqr4FFmh37979l4KCAlFRFFpbW3E4HCkpAtDr9SxatCjF7vF46OnpSbGnWwOgsrJSB3ynlSTp28nJycR5/dqEoqKitBXd2tpKPJ56LSuKkjZii8UiZGVlWUWz2fwbv9+fBJ1+pFQtXbo0xfbu3TtcLhcA8+fPT5ony3LaIERRZMmSJUtEILeoqIjt27djtVrZtm0bmzdvTpmwePHilIju3buHoigIgsCmTZuS+mOxGJFIJGUOQFZWlln0+/1+gMrKSo4ePUp1dXVKRQuCQEFBQZKts7OTgYEBABYuXMiKFStQT4YKmX6JuN1uLl26xPj4OH19fV7t8PDwwMzoPB5PUttoNJKTk5Noj42Ncf/+/YRTW7duJScnB51Ol7Tfb9++JT8/n66uLux2O9FolIGBAWV8fNyjffz4cWcoFKpVFw6FQoRCoSSwwWBg+jlvbm5ORFNcXMzy5csRBAFJknj//n1int1ux+FwMDU1BYDJZKKvr08B3oo+n8/e3t6eOISRSCSlGqcXSUdHR6KgNBoNO3fuTDhVXl6eNE+W5QRUEASqq6ux2+2fAIcIDLW3t7vUwRqNJmmvAD5+/Mjg4CBOp5MHDx4kHKmoqKCwMHH3sG7dOpYtW8ZMZWdns2fPHsrKyrDb7Z3AkABo9Xr93q6urv+uXr1alGWZc+fOpaR7eqrhc0GdOHECrVabkp1Xr17hdruRZZkFCxZQWlqKwWDg6tWr0fr6+v3ATxpAjsfj/YFA4Pu9e/cWCILA0NAQXq83xXNVeXl5HDlyJKngpjsoSRIlJSVYrVYKCwvR6XSMjo5SW1vbMTExcQH4pD4EYi9fvnxZWFj457Vr1+osFgvPnj1LuX/h8xfq8OHD5Ofnf9WxmZJlmQMHDow9efLkCOAGFBWs8Hmv+8vLy3etWrVKLC4uxuv1MjExgSAImEwmNmzYwL59+8jLy8sYCnD27NlPN27cqAMcTHv+TNcci8VypqWlJaK+FgOBgDIyMqJEo9FZvzZjsZhy5syZSeBvpHnwpcA1Gs2fLl68OBaJRGYNU+Xz+eRdu3YNA3/MBKpKD5SVlpb+3NjYGI7FYhkDg8Ggcvny5U+SJDUDZcziXa1K5PPfQGVZWdnPp0+fnujo6IgHAoEU2ODgoGyz2WKHDh0as1gsTcAWfuVPQvhaxzRpAB1gBNZ9iUISRfGbLzfcIDAMvACeABNk8O/0PwJCxMb99V7LAAAAAElFTkSuQmCC', 'youtube': 'iVBORw0KGgoAAAANSUhEUgAAACEAAAAaCAYAAAA5WTUBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMNwAADDcBracSlQAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAKkSURBVEiJxZcxSBthFIC/918uGhxMsyptcGjoIgGHW9wSihQKGZrNthHsIC7S1TqWgkRwcZV2lKo0FouixaEuEQ4khIIdrClkEoIZgiae93fQgFgll5jqt93x3v++e3f/3TvhGgYHBx/UarUUEAMeA48A/3WxDagBf4A9EdmsVqsfd3d3j64GyeWDZDJpFAqFKWAC6G6haCPKIjKTzWbfA+4/Ev39/V2dnZ3LwNP/UPwqaycnJy9yuVwFQF2cVIFA4PMdCQAMBQKBL8lk0gAwACzLmtJav7kjgTp95XK5ViwWf0g0Gg36/f7fQLBRltYaEWkU5hkRKTmO06dM03ztRaAuEQ6H0Vq3RUJrHTIM46XR29v7jvNt2BClFEtLS0QiEfb39ymVSrfujIg4Cog0mxiPx1lYWGBycpKenh5c122cdANa64gCHra6QCKRYHl5mfHxcYLBII7jtLJMWAEdrUrUSaVSrK6uMjo6SigU4uzsrJn0DtU4xhs+n4+xsTFWVlYYHh6mq6vL821qm0Qd0zSZmJggk8kQi8XuR6LO1tYW+XzeUzd87S6ey+WYnZ0ln88jIijV+DrbJnF4eMj09DTb29u4rtvU+8MHVLnFDjk+PiadTrO+vs7p6WkrS1R9QAGPb8zLaK2Zm5tjcXGRSqXiqe03sO8D9pqVyGQyzM/PUywWMQzjNgIAv3xa600Ree4l2nEcRkZGODg4QCmFYRi3KQ6AiGzIwMBAt2EYB9znp9y27bLWesZjUtsELkjbtl2ur6osy/qqtX7W7io3ISIb2Wx2CHDrT5TrOE4SWLsjgW+O4yS4mLiv9ldZljWptX6Lx2mrSY6A9M7OzgeuG/kvE41Gg6ZpvhKROPCE85mj5Z8fEfnpuu5313U/2bZdvhr0F9Fo9phaoDu9AAAAAElFTkSuQmCC'}
image = '/9j/4AAQSkZJRgABAQEAeAB4AAD/4QBYRXhpZgAATU0AKgAAAAgABAExAAIAAAARAAAAPlEQAAEAAAABAQAAAFERAAQAAAABAAALE1ESAAQAAAABAAALEwAAAAB3d3cuaW5rc2NhcGUub3JnAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAEuARcDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKKKACiiigAooooAKKKKACvH/23f25PAP8AwT9+CreOPiBdal9kuL2HStL0zS7Q3mqa9fzZ8mytIFIMsz7WwMgAKSSACa9gr4v/AOCyn7Lnj74r+FPhb8WPhbbaPrnjr9nXxSPGtp4c1e4+z2fiS2WFkubbzT8sU+zDRSN8qsD0yCAaTbsjpv2KP+Ctngv9sT4xan8NdQ8E/FD4O/E/TtOGsx+FPiFoP9kahqWn7gpu7bDuksasQrDcGB3fKQpI+qq/LL/gnZ8QPiD/AMFn/wBuL4c/tZa14GsPhP8ADH4MaRrPh/w3p51lNT1bxJqV9GkN08zIiBLWFPuqwDeYARkMdv6m1MZKS5o6outRqUZulVi4yWjTVmn2aewUUUVRmFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcv8bW2fBjxc3pot4f/ACA9dRXKfHdtnwP8ZN6aFfH/AMl3qZ/CzbD/AMWPqvzPh7/g2CXb/wAEptF/2vEWqH/yKK/Qyvz3/wCDYhdv/BKLw/8A7XiDVT/5Hr7T+N37Q3hD9nPS9BvPGOrf2RbeJ9ds/DWmv9mln+0ahdsUghxGrFd7Ajc2FHciuPLmlhKbfZH0nGVOVTiDFxgrv2k9F6s7WiuL+KX7QnhH4L+K/BmieJNW/s7U/iDqp0TQIfs8sv2678p5fLyikJ8iMdzlV465rtK7eZPRHzEqc4xUpLR7efTT5hRRXgv7QP8AwU8+A37LHxg0/wABePviRo/h3xXqKQSLZSwzyi2SdykTXEscbR26uw4MzIMfN93mlKcYq8nYuhh6taXJRi5PeyTbt8j3qigNuGRyD0NFUYhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyH7QbbPgJ44b00C/P8A5LyV19cZ+0a2z9nrx43p4d1A/wDktJUz+FnRhf40PVfmfF3/AAbHLt/4JO+Gv9rXdVP/AJMmuy/4Lb/8ku+A3/ZdPCH/AKVPXI/8Gyi7f+CTPhX/AGtb1Y/+TTV9Ofty/sNeC/8AgoN8F4PAvjq48RWmkWuq2+swz6JqBsbyG5g3+WyyhSRjeeg9K8/BxcsFBL+VH1nEdaFLibFVKmyqz/No8B/4LKfFrxL8LPGn7Of/AAjutaho39reNL+C8+yy7PtEa6JfyKreoDorD3UGvhv4V/tQ/HH9jz9m34JfGe8+MnxE+I+pfGD4R+L9d1PQ9fuxf6bY3mm6Yt3Yz20bjKMp2eYSSXw5J+YgfeXwo/4IP/Bn4TNYmPXPip4gOm6uut2x13xO9+YZ1s7q0wpZMhDFdy5UYywQ9sH0zQv+CYHwr0Xwf8JvD72er6honwb0DVPDOi2V5diSK7stRtFtLqO6+UGXdCuAQVwSfwqVGrKTntt19P0MaGZYKhQjh786V7+7vdSaWt9pNdfM+Ff+CO/7UHxlk/bP8G+G/FVx8fdV8J/EzwFLrGoyfE2W2aI6pD5cwvdI2tvFlIkrJ5ajaN0ZJPG31X/gqV4V8M/Eb4i+OP2e/hL4aTXPjn+1HY2A8calJM89l4T0GzCwjUrvfuSFljBSGONVZ5CHxu2b/oX9jb/gk/8ACz9h/wCJN34s8L3HjPW9bbS/7C0ybxJrsuqL4e0zzfN+w2SsAIYd4U4O5vlA3Yznz/8AaX/4IN/B/wDao/aL8TfFDXvFHxf0vxR4sMH2/wDsPxY+n25WGFIY0VFThQiDgk85ojRqKlyvV3/D+vzKq5pgZ5g68G4x5V0dnJO6ula6Wjt1cV0PsXwV4Wh8DeDdJ0S2knmt9HsobGKSd98kiRIqAs3diFBJ7mtOs3wd4Xt/BHhHStFtZLqa10ezhsoZLmUyzOkaBFLueWYhQSx5Jya0q9BbHyM3eTd7hRRRQSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVzPxe+M3hb4CeCZPEnjLXLDw7ocNzb2j3l2+2MTTzJBCnc5aSRFGPXPQE1UYylJRirt9AOmrif2mG2fs4fEBvTw3qJ/8AJWSu2rhf2om2fszfEVvTwxqR/wDJWWs6nws6MH/Hh6r8z48/4Nm12/8ABJXwf/taxqx/8nJK+/a+Bv8Ag2hXb/wSR8E/7Wq6uf8Ayelr75rly7/daf8AhX5Hu8Zf8j7Gf9fZ/wDpTCiiiuw+aCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACivj39q7/guj+z7+x78atW8A+JNX8Vax4g8Lwx3PiYeHPDl3q1v4VhkUOkl9LChWIFDuIBZgOqjIz9RfCv4qeHfjh8N9E8X+EdYsfEHhnxHZx3+m6jZyeZBdwOMq6n+YOCCCCAQRQB0FFFFABRRRQAV4z/wUI/azk/YW/Y08e/FqLw6fFbeB7FL5tLF59j+0oZo42Pm+XJtCq5f7hzsxxnI9mrw/wD4KZ+CoPiL/wAE6fjtotxD58d94B1tVQjOXFjMyfkwU/hXRg4xeIgpq6urrur7aaky2Mv9uX9qLVPgn+ybpPxO8M+IPCeg6Suq6Jc6lqGv2d5d2p0u6uoY5FjW1SSQTSCZERyhRWYFsDLDyuL/AILs/Cy4/aRh+Hsfg/4sfZV8bH4c33iuTw+sfh/TdeM7wR2ctwZc7nZNwwp+V1JHXb8Y/FX/AIKdfDX9ur/gjrp/7PPwybxh44+MF38MdMlNjpvhu8kggvtJtba9mgaZkVWkLWbonl797lQM5Brvbj9jD4wfHH9jb9pzw/Y/D/WNP8W618bdM+KfgqPUBHppvTPJpV5MyPOyKrQhLlG3EEMjJy3y19ZSyjD06PLjI8suZpNvl91uKUn3S130tqY+0bfund/CH/g4RHxO/ax8J6DJ4H8MWnwn+IHi2TwT4e1iLxnaS+JmuvOkggvbjR+J4rOeWPYGIGzcGJOVDaH/AAco/spXXxj/AGKtS+JE3izxBb6V8F7I+ILbwxaALZalfi7tAt7cHq32e2F2ETHDTbgw2sr+f/A3/ggf48+Cf7Rmj6fpsvwRs/hN4d+JA8fW3iiDRJf+FhXdqkzXEejS3ARY/J8whGkD7igB5/1Y/Sz9of4HaL+0z8B/GXw78RNdx6F430a60S/e0ZVuIobiJomeMurKJFDZUsrAEDII4rmxWJwWExdCvgLWXxddPO99Wr32+Q4xlKLUjpPDHiG28XeGtP1azcSWeqW0d3A4Od0cih1P4giuP/atfZ+y58Sm/u+FdUP/AJKS1s/D3whpPwK+EegeHYb6RdG8I6TbaXDd6jOnmGG3iWJXlfCruKoCxAAJzwOlfEX7e/8AwUH8W/H/AONUP7LP7LUPw08dfEHxh4UvtW8UeIda1hpdB8G6QW+xky/Yy0j3TySYWMcpmNmRlfK/L1qbak6afL3/ACuduFqKFWE5dGn9zLv/AAbTrt/4JG+Bf9rU9XP/AJPzV961+O//AATF/wCCkmg/8EgvhT4m/ZZ/aE0m+0n4mfCXUHu4ZfDiNqWn+KLC/ZruK6tpGEflgeZtKS7Tyv8AFvRPoWP/AILY+MvjAoX4P/sz/FDxhDNxHf6hGbO1T0LNFHKn4GVfrXgf2rhcDCGGxE/fUV7qTk9uyTOfjDjDKnnWJn7TWc5SUVGTlaTbXuxTaumfoHRX59/8Jp/wUM+Oku2x8L/C34QWU3+qnvJo7udFPdhvueR6GJfpRJ/wSl/aC+NS+Z8Uv2rvFhim/wBfpvhu3ktbaQHqMrJEn5wmp/tqtU/3bDVJeckoL/yZp/gfNf6w16umEwdWXnJKmv8Aydp/+Sn3B8Q/jN4P+EdkbnxV4q8OeGbcDd5mq6lDZrj6yMK+dfib/wAFtP2a/hi0kb/EOHXLqP8A5Y6LYXF7u+kip5X/AI/XnPwS/wCCGP7MVzeahcSX+tfFK+0m+ksNUe98SCUWt7HjzIZhZ+UUkXIzG5LDIz1r6I+BP7JH7P3hA3kngHwN8M5LjQ76TTby6sbO2vbqxu4seZbyzHfIkqZG5GYMuRkDNT7bN61uVU6afdub/DlX4kLEZ7XtyKlST7uVR/goL8WfM8n/AAXYu/ilK0fwe/Z7+K3xD3EpHcSWxtYM/wB4mFLjC9/mK++Kcn/BVv8AaD+Gp83x9+yP41Gnv+8N3oU8119nj6jeqwuuQOu5057Cv0BRBGgVQFVRgADgClqv7NzB+9LFu/lCCX3NN/iX/Y+aP3p46XN5U4KP3NNv/wACPhfwT/wcIfAfWNQ+w+Jrbx34DvoyEnj1fRTIsTd/+PdpHwPdAfavfvht/wAFG/gR8Wlj/sP4seB5pZcbILnVI7K4f6RTlHP/AHzXX+Kb/wCGPxd8YXPgnWpvAnijX7GLzrjQb57S9vLeMgHc9s+51UhlOSoHzD1ryL4mf8Ed/wBm74p+Y158LdE02aQ5EmjSTaXsPqEgdE/AqR7VMY5vD4KlOovNOL+9OS/AUY57T/h1aVZLupQfpeLmr/I+ktP1G31ayjubWeG6t5hujlicOjj1BHB/Cpq+A9Q/4IA+EPBt/JffC/4sfFf4bXzHchtNSEsUR7YCCKT85CfeqzfsZftvfBCPPgj9ozQfHVpAC32bxVYbZrgDou+SO4bJ/wCuq/Wq/tTHU/4+FlbvCUZfg+V/gV/bOZUv95wUrd6coz/BuD/A/QWivwS+EvgPTf2sv+CaPxE/a++Kn7TXxF8I/tKeFZdbvNtp4pOl2nw+1CynnS00VNMyAEmEUQMRXfKLjAyxJb7G/Y8/4OH/AAZrnwO8Cr8b/DvjTwH46vtDs59WupdEJ0+6maFC9xEiEzKjsS4XyztDAAtivSxmYYbCpSxM1BN2V9F9+x+lcN8IZ1xBOpSyXDTrypx5pRguaSV7X5Vq9eyZ+k9FeP8Awk/4KAfBP45iJfC/xP8ABuoXE33LSTUUtbtv+2E2yX/x2vYFYOoI5B5BHetqOIpVo81KSku6af5HmZlk+Py6r7DMKE6M/wCWcZRf3SSYUUUy4uY7O3kmmkSKKJS7u7bVRRySSegHrWx5yu9EPor5K/aU/wCC03wQ/Z+vZNJ0/Wrj4ieKd/kxaT4XjF7ulJwFafIhHzcEKzOP7pPFeRf8Jn+25+3zxomj6T+zf4FvOl1f7pNbliPUAMvmq3QgiO3/AN+vEr5/hoz9lQvVn2gr29X8K+bR+o5X4R55Ww0cwzZwwGGe1TEy9nzL+5Ts6tTTbkg0+6Ps79oD9rL4b/ss6F/aHj/xjonhmJkLxQ3M+66uQOvlQLmWT/gCmvjvXf8AgsV4+/af1a40L9mH4N6/4wcOYG8Ta9CbXS7Vum4qGC4xyPMmRuPuHpXdfAL/AIIefCX4ca9/wkfj6fWvjF4wmYS3Go+KJ2mt5JO7fZ8kOD6TNL9a+xND0Kx8MaRb6fptna6fYWiCOC2toVhhhUdFVFACj2ArH2Oa4r+LJUI9o+9P5yfur5J+p6P9o8BZB/uNCeaV19utejh0+8aMX7Wov8c4J9YdD8iP2UPEX7SX/BI6++NHhfxt+zH4r+POvfGrxZeeO9P8UeBPJvNPv7y/jjEun6m7hWtYoZFI3shQCSTapX5j9tf8EXP2OfFP7B//AATk8A/DnxrJZL4psze6nqNlYuHs9Ilvbya7NnCQSCsPnBCVJUsrEEgg10/7G3/BQPw/+2V8VvjF4T0jTLjTrr4ReIzoUk8lwssesRfOgu4sAYQywzpjnHl5zzgfQFezhakJ0k6cuZbX7201PzPPMJicNjqlPF0lSm3zOC0UVNKSSV3ZWasruy0Ciiiug8kK+OfiF/wX0/ZR+F3x/u/hzrXxTtbfWNN1EaPqOoJpt3Loul3pO37NPqCxG2jcEEMS+1CCGZSpA+vNc0+TVtEvLWK4ls5bqB4kuIvvwFlIDr7jOR9K/Ef4eT/FT9l7/glx4v8A2E9Q/ZC+J3jL4napb6v4dsPE2l6LFP4H8RG+nmaHXLjVGcLC8YkjkIkG9WhiBaI8RgH7UeLviV4c8AaMuo694g0XRNPZd63V/fRW0JHXId2Ax+NfOvxg/wCC0X7JfwjtriHxF8ePhrdLtZJ7fTNRXWnwRgq0doJT7FSPwr5D/Z6/4NG/2f8Aw14G8NzfE7XPiL4+8WwaZbRaxv14Qaa1ysSiVbcRwpMsAfcEDyFguMnNfUnwn/4IKfsgfBpoW0r4D+DL6SHHza4s2ubiO5F5JKp/LFfWU8Pw5SinWrVqkraqMIxSfa8pSfz5TDmrPZJHgfjD/g6s/ZH+HMcOk+DIfiD44K/urS08NeFjbo3oFS6e3IHsFz7VgSf8HAvx8+NACfBz9hX4w65bz/6nVfEHn2FoPTO22MZ/7/jH61+mPw5+C3g34PWP2Xwj4T8M+FrbG3ytI0uCxjx6bYlUV01U82yKl/BwLm+9SrJ/eoKH5h7Oq95fcv8AO5+Uv/C5f+Csvx+YLpvwt+BvwZsZ/wDVXOo3kd3cRqehcC5ueR6eSD7UH/gk9/wUB+Pr/wDF0P25G8Jwy8yw+BdLkh2j+6rQLYH2yefrX6tUUf64Vqf+6YajS81TUn98+di+rp/E2/n/AJH5Wad/wahfC3xvfw6h8WPjR8dfilqUbbme+1qKKGQ98iSOaXn2lFdne/8ABu34X/Zg8U+H/Hn7IfjbVPgH8UtDgnsLzUr8S+JNP8T2MxjL2t7bXMpUANGrK0W0BhkqzBGT9IKK8/MuJ81x9P2OLrylD+XaP/gKsvwNIUYRd4o+Tf2Af+CYK/sweMvGnxK+KHi9PjP8c/iRdwXOu+Lr3R4bKO1ht0MdtZ2Nuu4W0MaHB2nLkAnAVVX6yoorwbLcvlSd0FFFFAz5J/4JR/8AIU/ab/7Ln4j/APQbWvmi2/a++LPgH4u6h8P/AIK+H/h9pmv/ABO+O3jjQri51SC6ktY2tLW1n/tCb98W3gFyyxgKxVAEUZz6XoP7HP7ZXwI+L3xSu/hb46+Alj4N+IHjjUvF8VrrlhqFxqEX2p1+V3RAgbZGnABAOeW6nofhV/wTP8d+Df2qPDPj3Uda8JyWGi/FHxh45uIbee4M0lrrFjDb28agwhfNR42LgttAI2sx4HzMo1pwhShGScXq7W0bWz9D4+UMROnTowhKLi7N2to5K7T9L3PFfiH/AMFk/il8NfgbofhfxNf/AAl8HfFif4ga94C1XxXqkky+GbJNJjieS+WHIlLS/aIVWPkZ3cdMfUv/AASb/bxvv27fgd4ku9cvPCep+JvAniO48N6jqXhmWSTSdZCJHJDe24kG9UljkU7TnDK3ToPGfif/AMEkfiFq2qah4v8AD+sfDq48ZaZ8WvEHjrR9N8QWb6hoWq6VqsVtFLZXyNDvWUC3VgYwwVgCHzyv0Z/wTt/ZR8Tfsr/C7xFF401Tw3qPirxh4gutdvIfDtk1po+lJJtWKztY2Abyo0QcsASWPGACdsCsb9ZXtb8tuvp+d/mdGXLMVjF7a/Jbrta2nzv87a3sfB/xw/Zx8M/sVft3fAXS7Dwp4qtdW1D4npr2v/G7WRKq63LqDXBOivNEpDmYGKLEm2Jdg6Zav1wr8+YP+CXnxs8Ua54R+HfjL4j+FfE3wF8D+Pl8c2M95FdTeLL5Yrh7q2sJ5DiIokzkGTJYrjrgKP0GrqyujKHO3HlTasn6a+vruzsyXDzp+0coOKbVk+llqvNf3nq92FFFFese4fM/xP8A+CN37L/xn/aG/wCFq+KPgr4L1jx01wt3PfzQOIr2cHPm3FsrC3nkJ5LSxsx7k19B+LPAmh+PNFbTdc0bSta05hg2t/aR3EJ7fccFf0rVopSimrM0pVZ05qpTbUls07NejPlz4vf8EZP2cfjEJJLj4c6foF5JnbcaBNJpnl59IoyIfzjNeON/wRJ8W/BR2l+CP7RnxH8ExRHdFpuoSG6tH9FbyniTH+9E/wBK/QaivGrcPZdVlzukoy7xvF/fGzP0jK/GLjLA0vq0cfOrS/krcteFu3LWU4peiR+fLH/god8AIGhjT4WfGe3x5cczGO1uEB4Vm5s8kcE/e78nrVe3/wCCXfxy/bUmj1D9pf4yaha6NI3mf8Ib4SKw2sYzkLI+0Rbl6ZMcrYP+sr9DqyfHnhqTxp4G1rR4dRvtHm1axns47+ykMVzZNJGyCaJxysiE7lI5BANYS4doyVq1SpUj/LKba+ezf/bzaPWo+MmY0pKpl2DwmDrt616OHjGol15b80IPzpwhJ99jyH4S/si/BH/gn18PNU8Q+H/CekeHbPw/p819qWtyW732orbxRl5XaYh5ioVWYonHXC9q6zxX+2B8MfAPwM0v4leIPG2gaD4I1myhv7LVNSuRax3EUyB49qvhixU52Y3DnI4NeJ/8EePjFrnxv/YiXwx8Qpr7VPHXw11bUfAXiptTZZLi8ntJWQSSYJz5kDxHJ+8dx5r4H8D2S+G/2x/hXcfFpf8AhPL74N/E3VPhD4jm1z99HcWGprPdeH9RlS43CTa01wobOFVVx0GHLFrDUqf1aEYwktrWSd1fbsr6W6bk0eHamd5hjP7cxNWriKMruTlzyqR5ZONnJtpykopNyaXOly9T7q/at/4K2aF8NU8Cab8KbXwv8TNa+IekXPiPT7y78TQaPoNnpcDLG93PfSAooMrCJU4YuGBwRg9d+yT/AMFBo/21/wBiPxD8TvCHhu4XxJocWpWT6Ak4vPM1K1jZkhhmQATRy5iKOowwkHpXxHH/AMEaPGPiH42+KbPQfD/g6zt/g748uNZ8B/8ACZ6bPqHhvxHoerrHdz6Y68sBa3CEqYwQHlYcc4+8P+Cfn7H+tfsp+D/FV14r13Tdb8XeOtYOsajHpEElro2kKI1jhsbGF2Jjt4lXA4XO48DFPC1sdVrv2mkdV0sraadb39fusRxBl/CuAymKwjVSvFwkrt80lJ81pJPl5fZtapRaatfm5kfmj+wp8Pfj5+yn+13+z7q1z8NV+FWkfErSf+EN8S3erj+0r/X5o7ybVZZp4IB/oUjq8sMbTFioIz0JH7XUUV35fgFhIOnGTa8+mn9f8E+R4w4tnxBiIYqrRjTmk03Ft815Npu+uist2r3aUb2CiiivQPkAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPh/wAb/wDBJjxfr/7WfxO8V+FvjZ4i+Fvw7+KV7p+r67ofhO1W31TUr2C3aGZjevkwLJwx8tSWJOegr6J+An7FXw7/AGdLALoejPe6lJa2Frd6tq9w2oahqAsozHavLLITmSNCQGABGa9Xorjp4ChCXOo66vXW1+3b5H0WM4szXE0FhqlVqCUU1FKPMopJc7STm9FrJvZdlYooorsPnQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK81/a7/ai0P9jL9n/WviN4j07XNX0nRZ7G1ez0eKGS9uZbu9gsoVjE0kUfM1xHktIoC5OeMH5N/4iFPh/wD9Ec+O3/gLoH/y1rrw+AxOITlQpykl2Tf5HPWxlCi7VpqPq0vzPvyivz+vf+Dib4aaRbNcX3wm+OVjZxkGa4ks9DZIVzgsQmqMxA6/KpPoDX6A1GIwdfDtRrwcW+6a/MqjiaVZXoyUvRp/kFFFFc5sFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfI//AAXO/wCUaPi7/sYvCf8A6k+lV+T9frB/wXO/5Ro+Lv8AsYvCf/qT6VX5P1+reHv+7Vf8S/I/O+NP49P0f5nO/FaL7R4Bv4v+e3lx/wDfUij+tf0dV/Oh42h+06Pbw/8APbULKL/vq6iX+tf0X15PiE/9rpL+7+rPS4L/AN2qP+9+iCiiivz8+yCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK8v8A2uPhR8RPi78JbjT/AIXfFLUPhL4whbzrPVYNHsNVt5yP+WNxDdwSjy2/vRlHU4OWAKMAeL/8Fzv+UaPi7/sYvCf/AKk+lV+T9d7+1v8AFv8AaZkupvg78fviF4qha6vLTVDpdxpGhrYeI47C8gu45rK9trCFpoRNBCzBCkqAhZUjLYPBV+xcEYGeHws5Saak00079PwfkfmPFmLjWxEYpNOKs01bqU9Vg+1Xuhxf89tf0lPz1C3H9a/okr+drX9Ok1PT1WG/utKuLaeG8t7y3ETS2ssMqTRyKJUeM7XRTh0ZTjBBFfWv7Fvif9tb9vPU7W88O/Hzxj4e+G0c+L3xnqHhXw0YtQVW+eLTYhpim6c/dM+VgQ7vmldGiPkceYGc6kMVdKKjbV6t3bsl13PT4PxkI05Yezcm76LRKy3fQ/XCiqPhrSJtA8PWNjcajfaxPaQJFJfXgjFxeMoAMknlIke5jydiKuTwoGBV6vzQ+7CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOF/aJ/Zp8D/tX/AA1uPCfj7w/Z+INGmYTRrLmOeymAIW4t5kIkgmXJ2yxsrrk4PJr8m/2vP+CX3xR/ZA1xZvD2neIvi/4BvJVhsb7SrA3XiDTpGYKkF7awqPNBJAF1AoTr5scIG9v2eor1MrzjFZfU58PL1T2fqv13PPzDK8PjIcldej6r0Z+an7E//BEmbxM1n4s/aEgt54crNZ/D63uFnsou4OqTIdt04OAbaMm3GCGa4BBX9JrGxh0yyhtraGK3t7dFiiiiQIkSKMBVA4AAAAA6VLRXPjsfXxdV1sRLml/WiXRG+FwdHDU1Soxsv637hRRRXGdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUV4L/wAFB/2/PD3/AAT8+E2k63qWh694y8TeLtXh8OeE/CuhxiTUvEmpzZ8u3iB4VcKS8hyFA6MxVW81/Y6/4Kp658Yv2lj8FvjP8FfE37P3xVv9Jk1/QdM1HWLbWtP8RWMZAlNte24WNpo87nh25VQTnggAH2JRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfFP/BbX9l3xD8SPgl4a+NXgHXbHQ/iV+zBeXXxA0JNTSSbS9Vigtma8sriNCD+9hjwrj5lIIBQOzDx3/gl9oHxd/wCCqPx8+GX7Znxgj8F+FPDPgvQ9Y0j4eeFPDck883n3MrWV/fXs0o/iEDoka54CMdpU+Z9q/wDBRNtn/BPz46N6fD3Xz/5TbivEv+Deddv/AAR3+Df/AFx1U/8AlYvq5XWksSqXTlb+d0v1Pfjl1KWSSx7vzxqxgu3K4Tk9O90vxPtCiiiuo8AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPGP+Cjz7P+CeXx5b+78OvEB/8ptxXjP/AAb3rt/4I9/Br/r31M/+Va9r2P8A4KUNs/4J0fH5v7vw48RH/wAplxXkH/Bvwuz/AII//Bn/AK9NRP8A5VbyvPl/vq/wP80fXU/+SXqf9hEP/Tcz6D+Nv7T3hv4B+PPhv4d1yPVJNQ+KWvN4c0Y2sKyRpci2muSZiWBVPLgfkBjnAxzkar/GizT9oCP4d/2P4i/tCTw83iMap9i/4lIiW5W3+zmfP/HxuYP5e37gLZ7V8q/8FbfG2i/Dj9oT9j3XPEWr6XoOi6d8VJZbvUNRuktbW1T+xdRG6SSQhVGSBkkDmvlz/gsB8YPDfx4+Lvje68E+NNL8RaHN8ItJtDqHh3WI7qGGY+O9IV9ssDsqyqrjodwyK2q13C/l/kcOX5THEKne6Uk7u10nzWXb7r6n6/Vz/wAV/iloPwQ+GWv+MfFGow6T4c8L2E2p6leSglba3iQu7YAJJCg4ABJOAASQK/EH9sTwNqP7PX7QXi79nvwVNp9n8C4/ibpEs+j+LfFd/p2gpLP4ZW9SyutRUvPFBNcI8gQuA0kSfMMZr7b/AOCb/wAT9D8Hf8EcfEmq/G/VfC/jD4ceCbnXLeSVnm1jTZ9HtLl/KtUlvYozeLGymCJ8MriOIKxI4mOKcpOFrNX/AA/QrEZFGlRhiFNyjJx0tZ2lqur97y282fRn7GX/AAUN8E/tuXviDT9A0vxp4W8QeG4bS8u9E8V6O2laibO7Qva3kcZZg8EoV9rg9V5Ayufd6+FP+CSfjvTv2o/it8QPjxr3ijwLN4++IWn2VnpngzRNfttSuvA/hq1eQ2kF0sUjFbiWSZpZsqArsq/KQUX7rrahJyhdnm5ph4UMQ6cFa1tN7O2qv1V+v57hRRRWx54UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeI/8FMW2f8E4vj//ANk48Qj/AMplxXk//BAFdn/BIP4Mf9eV+f8Ayp3deqf8FOm2/wDBN74/f9k618f+U6evL/8AggUuz/gkP8F/+wfen/yo3dee/wDfl/gf5o+up/8AJLz/AOwiP/puZ9M/FX4G+CfjtpNrp/jjwf4W8ZWNlN9ot7bXNJg1GGCXaV3osyMFbaSMgZwSK57Rv2MPg74d06az0/4T/DWxtLiEW8sNv4Ysoo5IxPHcBGVYgConiilAPHmRI33lBHpVFdzhFu7R8vHE1ox5YyaXqzjfGX7Onw/+Itn4gt/EHgbwfrUPiySCXW0vtHt7gau8CBIHuNyHzWjVVVC+SgUAYAq3dfBLwZffC8eB5vCPhibwWsC2w0CTS4G0sRKwZY/sxXytoYAhduAQDXT0Ucq7C9vUslzPTbXa2xw/wp/Zi+GvwI1O6vfA/wAPPA/g28vohBcz6FoNrp0txGDuCO0KKWUHnByM13FFFNJLRE1Kk5vmm235hRRRTICiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDwn/gqE23/gm18ff+ye66P/KfPXm//BBNdv8AwSL+C3/YNuz/AOVC6r0T/gqY23/gmr8fP+yf62P/ACRmrz//AIIOLt/4JIfBX/sFXJ/8nrmvPf8Avy/wP80fXR/5Jef/AGER/wDTcj66ooor0D5EKKRmCKWYhVUZJPavCPjt/wAFRP2c/wBmbzk8c/Gz4aeH7qDO+xk163mvhjri2jZpj+CUAe8UV+Yfxe/4O3P2S/A9/wD2f4PufiJ8VtUkby7e38NeGpYxNJ6A3htyR7qrewNcV/w/U/bK/aV+X4F/sE+NLe1m5ttX8cXktjbXC9iFkjtY8e63DD3oA/XGivyQX/g4K/ac/Z3/AHfx2/YL+KWm2tt/x9a34Tlm1CyTHXA8h4h6jNzz+td18Gv+Dtj9j/4lXos/EWs+PPhlfK3lyQ+JvDUreW/QqWsjcBee7Yx3xQB+mtFeE/BT/gqB+zn+0WsK+C/jh8L9euZsFbOLxFbR3vPTNu7rKPxQV7qkiyorKwZWGQQcgigBaKKKACiiigAooooAKKKKACiuf+KPxa8LfBDwVeeJPGXiTQ/Cfh/T13XOpavfRWVpAP8AakkYKOnrzX5p/tC/8HRXgPWPHL+AP2Wfhz42/aa+IcxaOJdFsJ7bSbc52l2kMZmkRTyWWIRkDPmgc0AfYX7fH/BSjwh+wQPCWk33h/xj8QPiB8QrmW08LeC/COn/AG/WdZaJQ00ioWVUhiVlLyMeAcgNg4j/AGCv+Cl/hH9u++8W+H4PDfjP4c/Ef4fyxR+JfBXjDTxY6xpazAtDOFDMskEgBKyITxjIXcufzr8Efs//APBSbVf2uvDP7X3jj4e/CPxJ4m8M6XP4ctfhRZa9Hpd4uk3JLyCG5bzbeKcOVffLcuxClSMYSvrv/gnd+zV8ZvHX7cPxG/aj+OnhLRfhb4g8XeGbPwV4e8Dadq8erzaVpkE5uHmvbuICKWeSXG3Z91MggcAAH3PRRRQAUUV4H+11/wAFRf2f/wBg/wARaVo/xa+KXhvwbrGtJ5tpYTmW4u2jJ2iVooUd44yQQJHCqSrAHg4APfKK4q3/AGkvh5dfDXTfGa+OvB48I6zbLeWOtNrFuthdwt0kSYuEZfcGvDvip/wW5/ZH+DSv/bf7Q3wtkePIeLStaj1eVCOoKWnmsD7EZoA+pqK/MP4n/wDB3V+xz4EnaLRNY+IPj6XO1F0HwvLGZT2C/bWt+tcZJ/wc4/EL4wI3/ClP2HP2gviBFJxHd3tpLZQJnoztb21ygH1cfWgD9b6K/JGD9uD/AIKufH1/+KR/ZY+FXwz0yfpd+KtVEtxDnp8pvY3yO+bc/Slb9iL/AIKu/HdseL/2qPhT8NdLuOWtfC+kJNc2/tvFjG/5XBFAH621xHxS/aZ+G/wOgkk8bfEDwR4PjjGXfW9dtdPVPqZnXFfmSf8Ag2N8efGb5vjd+2/+0B8QUm5ntLG6ksbdc9VRZ7i5QD6IB7Cu1+Fn/Bo3+xr8P5Y5NY8P+PPHsi8s2veKJ4/NPq32IW39BQBD+2J+3j4q/wCCrnxM8Xfsu/si678J/EWi3Xg6a48ffELU7+TUNK0+2uy9sljY/ZSfMumBLGQ7kVSR94ceE/sp/wDBe/wf/wAEcfgif2Xfjr4G8ZX3xj+DmozaCLXwXbxalZa/byn7XbXcUk0sJjEiXK/IQXAAbALFE+rfF3/BAfw98DfHuk+N/wBkLx5efsseNrPT5NH1GWx0pfEmk+ILJ3Emy6s7yUh5VcArLvyMdCQpX3X/AIJ4f8E39G/YS0PxPqmoeJdT+JnxU+IWptrPjDx1rFtHDf61clQqokaZFvbIowkKswXJ5PAEezjzc9tbW+R0fW63sPqvM+S/NbpzJNX9bOx8Px/8F3/2wv2nV8v4C/sG+NUtbj/j01rxveS2NnOD0O2SO2ix6kXJHuKd/wAKS/4K4/tW/N4g+KHwT/Z70m5/19lolpHe3sYPZG8q6PHqLpT7mv1woqznPyP/AOIXLxB8fxv/AGiv2xfj18Vlm+aWxs7s2Non+wq3Ml2gX/dRM+gr3L4F/wDBsN+xf8DRDL/wqj/hMNQh/wCXvxPq91qHmf70G9bc/wDfqvv6igDh/g5+zH8Nv2d7L7N8P/h94J8D25XYY9A0O201WHoRCi5/Gu4oooAK4X4yfswfDX9omxNr8QPh74J8cW5XZ5evaHbaioHt5yNj8K7qigD4H+OH/Bsj+xf8cEkkf4Rw+E76QEC68Nard6aY8+kKyG3/ADiNeCSf8Gr2o/AovJ+zv+198fPhCFJaO1lvTeWx77CLWSzBX/eDe4av1zooA/Isfswf8Faf2WYz/wAIr8c/hD8dNHt/9TY+IrJLa+lx/edreNjn/auz+HWnJ/wXJ/bO/ZQbyf2iP2F/FF5ZW/N3r3w9uZL6zt1HVykf2qLB/wBq5Sv1yooA/N74A/8AB1j+x/8AGi6Sx1zxV4m+F+rM3ltZeLtCmh8uQcFWmtvPhTBzy7r+B4r7h+B37WHwv/aa0/7V8OfiL4H8dQqm9zoOt22oGMf7YidipHcMAQetZ/7QH7Enwe/assnh+JPwv8CeN967RNrGiW91cR+6SsvmIfdWBr4X+OX/AAaYfsn/ABI1P+1PBlr48+EOtRt50F14W8QyMkUvZgl2J9o9o2T2IoA/TiivyKX/AII8ft+fsgDd8Bf22p/GWmW/MOifEeyknRYx/wAsVkmF6OnAKrEOf4etUr/9nX/gq3+3Vcf8Ib8Q/iN8N/2cfBtiPs+oa94OIl1TXlP/AC1h8mV5UYZxgS2g46GgD7//AG2v+CqPwD/4J5aO83xW+JGg+H9R8vzYNFic3msXQI+XZaQhpdp6b2UIM8sBzX5/Tf8ABbr9rL/gp5eSaX+xX+zze6D4Rmcw/wDCyfiCqw2ka9DJDGW8jcvB2q902DzEK+gf2Kf+Dar9mj9krWE8SeINBvfjR4/kk+03PiHx3INS3zk5aRLUjyAd3IaRZJAf+WhPNff9nZw6faRW9vFHBbwII4441CpGoGAoA4AA4AFAH5PfDL/g2Y1D9o/xnZ+Of21vjp42+P3ieNvNXQLK+l0/w/YE43RR42yeWcdIFtRz901+lP7PX7Lvw5/ZN8Cx+Gfhp4J8M+B9DjC5tdHsI7VZmAwHlZRulf1dyzHPJNd5RQAUUUUAFFFFABX5J+Jvij4f/wCCY/8AwU5/aW8WfH74R+NvHWl/GySwvPBPjHSPCreJIbrT4rQQSaCQAfs8iuABGcLKAGYgBCf1sooA/En/AIJtf8Gu/wAH/wBoL4b6z8U/jx8O/F/hHVvHXibUtZ0LwGNXfT4/C+iSzlrKznjiVZFnVMkjzBtVkBVWDCvvD4Vf8G/P7Gfwc8s6T+z74FvWjxg64k+ubvqL2SYH8a+xqKAON+GH7Ovw++CUKx+C/Ang3wjGo2qui6LbaeoHoBEi12VFFABRRRQAUUUUAeOfso/tmaL+1r4o+LGl6PpOqaXJ8JPGl34Jv3vDGVvbi3SN2mi2k/uz5gA3YPHQVq/swftLR/tGfBu38XX3hfxF8PWnv7ux/srxNALO+j8i6e2WRkPRZSgZD3V19a+Hf+CWf7W/wp+Av7Qn7Y+i+Ovid8PfBesah8eNZntbDXfEVnp11cxmK3QOkc0isyllZQQCCQR1FfnP+xx+xt4H/bY8c6Po/wAQLG81TTfC/wAGfHniKxhivJbbbfReLtRjhlYxsrN5ZmLhSSpZV3BhxQB/SFdanb2M0Ec9xDDJdP5cKu4VpWxnaoPU4BOB6UNqdumorZm4hF28ZlWAuPMZAcFgvXGeM9K/lZ+IXizxx+0r4Is9W8aX3w9vP+Fc/A/wvceGNT8aeML3Qb7Q4PsW97/SIrcqL65+1KyNuWUl1jTaTjHtHgHxvDD/AMFEvh/8ZvF+sab8UtW1L4ieE7PU/EWi+I7vQ/G/hvVZbCwifTZNJvI1W60lneXmC0DSxoy/aIfmQAH7nf8ABQ7/AIKGfD3/AIJqfs6ap8Q/iBfqI7dTHpekQTIt/r1zwFt7dGI3HkFm6IuWPA59o8Na2nibw5p+pRo0ceoW0dyqN95Q6hgD7jNfDX/Bx18CPB/xE/4JafFLxhrvh3S9W8S+BfD1wfD9/dReZJpDXNxaLO8OeFd1iRd+NwAIBAZs/WXwq+LfhdH8L+BW8RaKPGknhW21xdCN4n9oNYDZCboQ53+T5vyb8bd3Gc0AfOH7VP8AwW7+Hf7J/wC09qXw71Xwb8Std0zwhJpcPjfxfo+j/aNC8DvqZUWQvZdwYbw6MSqnCsAu9wUH2ZeXkOnWsk9xLHBBCpeSSRgqoo6kk8Ae9fjf/wAHB3xn8B/EzwV8WNH8O+PofAPjD4Hapo2o+MfAd7YwWkXxnkuWsJ9PieSOdLm6hgjV+FGVL87AquPYv+DiLxnp3i74H/AXwTrXhu613VfiJ4vSaDwpqPimPw3oN/JBZSSPFqt82GEUbSLiOOSJpHGQ25VBAP0ol12xh09bt7y1W1ePzVmaVRGyddwbOMcjnpzXO/HP4wab8BPg54n8aaqrTWPhjSbvVnt4nVZrtbeCSdoo9xALssbADPX2r+fH/gnx+zV4M/bV+KH7Ofwp+Itno/ib4e6b8SPirYQaVoOvX02jQ28GnaVdRwWN2ZftDWa3DGSMmQlwQWLbjnl/hZ4e8A/tCfAPR9B/aE8RbPD/AMP/ANm3xJqPw1TVvEk1mg1aHxHqtsksA85BNcpHbW0KQndvSFBsIQYAP6Kv2bvjnY/tJfs7eCfiNp9nc6XpvjfQbPX7e2u2XzrWK5gSZUkKkruUPgkHGRXBfsC/8FAvBn/BRf4f+MfFXgOHUP8AhHfCni++8JRXtyFVdWa1SBzdwgEkQyCdSm7DEDJAzXxp8b9U+MDf8G3fwe8PfBPwfr3jHxV448DeHPDt9FopT7bp+lz6cpvJ49/y7miQwA8FTchhyoqv/wAGw/irVrL4fftBeCW+EOufC/w34c+Jl9PYQX98l0LCWSKGGTRyQMtNZx20O+Qn5/PXgYOQD9PZdesYZZI3vLRZIYjcSK0ygpGDguRnhQQQT04p1xrNnZ2kVxNdW0VvOyrHI8qqkhb7oBJwSc8Y61/ON8C/+CePw1+M/jz4D6t4i0/U7q6+Mf7QfjXw94rMWq3VuuqaTaPcTRWJEcihI/Mt9xaPa581stwu3y+80/xB8YvDPwp+GOqD4e654D8E+EvGUmgWPxE8YXXh3S7OWHxNfwSTwTwujT3cFtFb7YnZgEBOwjigD+oyS/ghuI4XmhWaQ7UQuAznBOAOp4BP0B9KbZara6lu+z3NvcbWZW8uQNgqcMDjuDwfQ1/Mp8Ovg/r37S/wm+NHxe17UNU8WfFT4OfAjw1qvhfVrK4vLeSBg1zF/aI3LDLJLFYW29XdMFsyDdlXM37Wnhf4R/szN8TI/wBk3xFZ6houv/s8aGniu+sfEMt39mkvPE2mQXrTyB2a3kmgMQnhG3aJWGxc7aAP6Y7fXLK70tr6K8tZLJVZjcJKrRALncd2cYGDn0wa8p/ZT/bK0P8Aa08SfFTTtF03UbH/AIVT4xuPBt5NctG0d/PDFDKZodhP7siYAbsHjpX8+fw+0aXwN4u1T4Q+KtQ+Gnhn9nnxZ8WfAK+NtE8DeOdT1Tw3pdvPb3zOr6jNIVWK6+zwySkXJKtbIflCKF/U7/g3T8D+B/hpoX7Unh/4Z3Nrd+AdI+NOqWugyW14b2D7ItraBFjnLOZUUfKrlmLKoOTnNAH6PUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB88ePP8Agkt+zT8UPiPqXi/xD8Efh3rHibWL1tRvtSutJR7i6uGbc0rt3YtySeprs/AP7EHwh+FmqG+8OfDvwrot22lXmhmW0sVjY2N3ctdXNtx/yzluGaRl6FmJ716pRQB4T4y/4Jh/s8/EOy8F2+u/Bn4eatb/AA7t0s/Dkd3o0Mq6XboSyQICPmhDMzCNsoCxOMkmtzX/ANgz4L+Kv2jrP4val8MPBV78TNPEfkeI5tLia/Ro1Cxyb8cyIqqEkOXQKoUgAV61RQBz/wAVfhR4b+OXw81Xwl4w0TT/ABH4Z1yH7PqGm38Imt7uPIba6ngjIB+oFcDafscaDZfttWvxujvbqPWNP8A/8K/s9MjhiS1gtDfC8eUuF81nLJEiqW2IqvgZkY169RQB5V8T/wBhv4O/Gr406D8RvF3w08G+IvHXhcKNL1u/0uKa8tNjbkw7DnY3zJuzsJJXB5rW/aP/AGV/hz+198P18K/E7wX4f8ceH47lL2Oy1a1WeOGdAQsqZ5RwGYblIOGYdCQe/ooA8i+Fn7AvwV+B/irS9b8G/C/wX4X1TQ7i7u9Om0zTI7X7BLdwRW9y8SoAqNLDBDGxUDKxqO1Y3jX/AIJhfs8/Ef4eeF/CevfBv4f6t4b8Ez3FzoWn3OkRyQ6W9xK00/lAjhZJHZ3T7rNgkEgY92ooAyfAXgPRvhb4I0fw14d0210fQdAs4tP06wtU2Q2dvEgSOJF7KqgADsBVD4b/AAc8LfB8+ID4X0HTdB/4SrWbjxDq/wBjhEf9o6jPtE11Jj70r7E3MeTtFdLRQB5n4f8A2NfhX4Ufw+2m+AfDNk3hPWbvxFo5hslX+zdRu9/2m6i/uyS+Y+5h13GuX8ff8Eyv2ffil8P9J8K+Ivg/4C1fw/oWpXOr6dZXGlRtHZXVzL5txJHxlfNkwzgHa5A3A4GPdKKAPF/i3+xF4V8TfC74iab4GtdP+Gfi7x34TXwoviXQ7JIbrT4YIHhsgFTaDHb7/ljBUbcqCAePlH/gmB/wRU1n9mz4h+NfFnxmj+DOsXHibwmvgVPDngjwumn6DeacZlnubm9ieJBPdXEiJuGzYqrtBK7FT9FqKAPE/CH/AATd+AvgL4B658LdH+EfgSx+H3iaTzdW0NNKjNrqMmQyvKCCXdSFKsTlCq7SMDHV/s5/so/Df9kTwjdaD8MfBPh7wNot9ci8uLPSLRbeKeYRpF5rAdXKRoCx5O3nJr0GigAooooAKKKKACiiigAooooA/9k='
footer = '''<div>
<div align="center">
<img src="data:image/jpg;base64,'''+ image +'''
</div>
<div align="right">
<p align="right">
<b>'''+self.tr('Author: Leandro Franca', 'Autor: Leandro França')+'''</b>
</p>
<a target="_blank" rel="noopener noreferrer" href="https://www.udemy.com/user/leandro-luiz-silva-de-franca/"><img title="Udemy" src="data:image/png;base64,'''+dic_BW['udemy']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://www.facebook.com/GEOCAPT/"><img title="Facebook" src="data:image/png;base64,'''+dic_BW['face']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://www.youtube.com/channel/UCLrewDGciytcBG9r0OxTW2w"><img title="Youtube" src="data:image/png;base64,'''+dic_BW['youtube']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://www.researchgate.net/profile/Leandro_Franca2"><img title="ResearchGate" src="data:image/png;base64,'''+dic_BW['RG']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://github.com/LEOXINGU"><img title="GitHub" src="data:image/png;base64,'''+dic_BW['github']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://www.linkedin.com/in/leandro-fran%C3%A7a-93093714b/"><img title="Linkedin" src="data:image/png;base64,'''+dic_BW['linkedin']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="http://lattes.cnpq.br/8559852745183879"><img title="Lattes" src="data:image/png;base64,'''+dic_BW['lattes']+'''"></a>
</div>
</div>'''
return self.tr(txt_en, txt_pt) + footer
LINES = 'LINES'
TYPE = 'TYPE'
ANGLE = 'ANGLE'
OUTPUT = 'OUTPUT'
def initAlgorithm(self, config=None):
self.addParameter(
QgsProcessingParameterVectorLayer(
self.LINES,
self.tr('Line Layer', 'Camada de Linhas'),
[QgsProcessing.TypeVectorLine]
)
)
tipo = [self.tr('merge lines that have the same attributes','mesclar linhas que tenham os mesmos atributos'),
self.tr('keep the attributes of the longest line','manter os atributos da linha maior')
]
self.addParameter(
QgsProcessingParameterEnum(
self.TYPE,
self.tr('Attributes', 'Atributos'),
options = tipo,
defaultValue= 1
)
)
self.addParameter(
QgsProcessingParameterNumber(
self.ANGLE,
self.tr('Tolerance in degrees', 'Tolerância em graus'),
type =1,
defaultValue = 30
)
)
self.addParameter(
QgsProcessingParameterFeatureSink(
self.OUTPUT,
self.tr('Merged lines', 'Linhas mescladas')
)
)
def processAlgorithm(self, parameters, context, feedback):
linhas = self.parameterAsVectorLayer(
parameters,
self.LINES,
context
)
if linhas is None:
raise QgsProcessingException(self.invalidSourceError(parameters, self.LINES))
atributos = self.parameterAsEnum(
parameters,
self.TYPE,
context
)
tol = self.parameterAsDouble(
parameters,
self.ANGLE,
context
)
if tol is None or tol > 90 or tol < 0:
raise QgsProcessingException(self.tr('The input angle must be between 0 and 90 degrees!', 'O ângulo de entrada deve ser entre 0 e 90 graus!'))
(sink, dest_id) = self.parameterAsSink(
parameters,
self.OUTPUT,
context,
linhas.fields(),
linhas.wkbType(),
linhas.sourceCrs()
)
if sink is None:
raise QgsProcessingException(self.invalidSinkError(parameters, self.OUTPUT))
# Criar lista com informacoes das feicoes
feedback.pushInfo(self.tr('Calculating feature informations...', 'Calculando informações das feições...'))
lista = []
for feature in linhas.getFeatures():
lista += self.pontos_ang(feature)
# Criar uma nova lista com as feicoes finais mescladas
nova_lista = []
# Remover os aneis lineares da lista e acrescentar na nova lista
ind = 0
while ind < len(lista)-1:
P_ini = lista[ind][1]
P_fim = lista[ind][2]
if P_ini==P_fim:
nova_lista+= [lista[ind][0]]
del lista[ind]
else:
ind +=1
# Mesclar linhas que se tocam e tem a mesma direcao (com mesmo atributo)
feedback.pushInfo(self.tr('Merging lines...', 'Mesclando linhas...'))
if atributos == 0:
while len(lista)>1:
tam = len(lista)
for i in range(0,tam-1):
mergeou = False
# Ponto inicial e final da feicao A
coord_A = lista[i][0]
P_ini_A = lista[i][1]
P_fim_A = lista[i][2]
ang_ini_A = lista[i][3]
ang_fim_A = lista[i][4]
att_A = lista[i][5]
for j in range(i+1,tam):
# Ponto inicial e final da feicao B
coord_B = lista[j][0]
P_ini_B = lista[j][1]
P_fim_B = lista[j][2]
ang_ini_B = lista[j][3]
ang_fim_B = lista[j][4]
att_B = lista[j][5]
if att_A == att_B:
# 4 possibilidades
# 1 - Ponto final de A igual ao ponto inicial de B
if (P_fim_A == P_ini_B) and (fabs(ang_fim_A-ang_ini_B)<tol or fabs(360-fabs(ang_fim_A-ang_ini_B))<tol):
mergeou = True
break
# 2 - Ponto inicial de A igual ao ponto final de B
elif (P_ini_A == P_fim_B) and (fabs(ang_ini_A-ang_fim_B)<tol or fabs(360-fabs(ang_ini_A-ang_fim_B))<tol):
mergeou = True
break
# 3 - Ponto incial de A igual ao ponto inicial de B
elif (P_ini_A == P_ini_B) and (fabs(ang_ini_A- self.contraAz(ang_ini_B))<tol or fabs(360-fabs(ang_ini_A - self.contraAz(ang_ini_B)))<tol):
mergeou = True
break
# 4 - Ponto final de A igual ao ponto final de B
elif (P_fim_A == P_fim_B) and (fabs(ang_fim_A - self.contraAz(ang_fim_B))<tol or fabs(360-fabs(ang_fim_A - self.contraAz(ang_fim_B)))<tol):
mergeou = True
break
if mergeou:
geom_A = QgsGeometry.fromPolylineXY(coord_A)
geom_B = QgsGeometry.fromPolylineXY(coord_B)
new_geom = geom_A.combine(geom_B)
new_feat = QgsFeature()
new_feat.setAttributes(att_A)
new_feat.setGeometry(new_geom)
if new_geom.isMultipart():
nova_lista += [[coord_A, att_A], [coord_B, att_B]]
del lista[i], lista[j-1]
break
else:
del lista[i], lista[j-1]
lista = self.pontos_ang(new_feat)+lista
break
if not(mergeou):
# Tirar a geometria que nao se conecta com nada da lista
nova_lista += [[coord_A, att_A]]
del lista[i]
break
if len(lista)==1:
nova_lista += [[lista[0][0], lista[0][5]]]
# Mesclar os que se tocam e tem mesma direcao (preservar atributos da linha maior)
if atributos == 1:
while len(lista)>1:
tam = len(lista)
for i in range(0,tam-1):
mergeou = False
# Ponto inicial e final da feicao A
coord_A = lista[i][0]
P_ini_A = lista[i][1]
P_fim_A = lista[i][2]
ang_ini_A = lista[i][3]
ang_fim_A = lista[i][4]
att_A = lista[i][5]
for j in range(i+1,tam):
# Ponto inicial e final da feicao B
coord_B = lista[j][0]
P_ini_B = lista[j][1]
P_fim_B = lista[j][2]
ang_ini_B = lista[j][3]
ang_fim_B = lista[j][4]
att_B = lista[j][5]
# 4 possibilidades
# 1 - Ponto final de A igual ao ponto inicial de B
if (P_fim_A == P_ini_B) and (fabs(ang_fim_A-ang_ini_B)<tol or fabs(360-fabs(ang_fim_A-ang_ini_B))<tol):
mergeou = True
break
# 2 - Ponto inicial de A igual ao ponto final de B
elif (P_ini_A == P_fim_B) and (fabs(ang_ini_A-ang_fim_B)<tol or fabs(360-fabs(ang_ini_A-ang_fim_B))<tol):
mergeou = True
break
# 3 - Ponto incial de A igual ao ponto inicial de B
elif (P_ini_A == P_ini_B) and (fabs(ang_ini_A - self.contraAz(ang_ini_B))<tol or fabs(360-fabs(ang_ini_A - self.contraAz(ang_ini_B)))<tol):
mergeou = True
break
# 4 - Ponto final de A igual ao ponto final de B
elif (P_fim_A == P_fim_B) and (fabs(ang_fim_A - self.contraAz(ang_fim_B))<tol or fabs(360-fabs(ang_fim_A - self.contraAz(ang_fim_B)))<tol):
mergeou = True
break
if mergeou:
geom_A = QgsGeometry.fromPolylineXY(coord_A)
geom_B = QgsGeometry.fromPolylineXY(coord_B)
new_geom = geom_A.combine(geom_B)
length_A = geom_A.length()
length_B = geom_B.length()
if length_A > length_B:
att = att_A
else:
att = att_B
new_feat = QgsFeature()
new_feat.setAttributes(att)
new_feat.setGeometry(new_geom)
if new_geom.isMultipart():
nova_lista += [[coord_A, att_A], [coord_B, att_B]]
del lista[i], lista[j-1]
break
else:
del lista[i], lista[j-1]
lista = self.pontos_ang(new_feat)+lista
break
if not(mergeou):
# Tirar a geometria que nao se conecta com nada da lista
nova_lista += [[coord_A, att_A]]
del lista[i]
break
if len(lista)==1:
nova_lista += [[lista[0][0], lista[0][5]]]
# Criando o shapefile de saida
feedback.pushInfo(self.tr('Saving output...', 'Salvando saída...'))
n_pnts = len(nova_lista)
total = 100.0 /n_pnts if n_pnts else 0
for k, item in enumerate(nova_lista):
fet = QgsFeature()
fet.setGeometry(QgsGeometry.fromPolylineXY(item[0]))
fet.setAttributes(item[1])
sink.addFeature(fet, QgsFeatureSink.FastInsert)
if feedback.isCanceled():
break
feedback.setProgress(int((k+1) * total))
feedback.pushInfo(self.tr('Operation completed successfully!', 'Operação finalizada com sucesso!'))
feedback.pushInfo(self.tr('Leandro Franca - Cartographic Engineer', 'Leandro França - Eng Cart'))
return {self.OUTPUT: dest_id}
def pontos_ang(self, feature):
att = feature.attributes()
geom = feature.geometry()
if not geom.isMultipart():
coord = geom.asPolyline()
# Tangente entre o primeiro e segundo ponto
Xa = coord[0].x()
Xb = coord[1].x()
Ya = coord[0].y()
Yb = coord[1].y()
ang_ini = degrees(atan2(Yb-Ya,Xb-Xa))
Xa = coord[-2].x()
Xb = coord[-1].x()
Ya = coord[-2].y()
Yb = coord[-1].y()
ang_fim = degrees(atan2(Yb-Ya,Xb-Xa))
return [[coord, coord[0], coord[-1], ang_ini, ang_fim, att]]
else:
coord = geom.asMultiPolyline()
itens = []
for item in coord:
Xa = item[0].x()
Xb = item[1].x()
Ya = item[0].y()
Yb = item[1].y()
ang_ini = degrees(atan2(Yb-Ya,Xb-Xa))
Xa = item[-2].x()
Xb = item[-1].x()
Ya = item[-2].y()
Yb = item[-1].y()
ang_fim = degrees(atan2(Yb-Ya,Xb-Xa))
itens += [[item, item[0], item[-1], ang_ini, ang_fim, att]]
return itens
# Funcao para dar a direcao oposta
def contraAz(self, x):
if x<=0:
return x+180
else:
return x-180