-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeasures_layers.py
160 lines (135 loc) · 21.6 KB
/
measures_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -*- coding: utf-8 -*-
"""
measures_layers.py
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Leandro França'
__date__ = '2019-10-06'
__copyright__ = '(C) 2020, Leandro França'
from PyQt5.QtCore import QCoreApplication, QVariant
from qgis.core import *
class MeasureLayers(QgsProcessingAlgorithm):
DISTANCE = 'DISTANCE'
AREA = 'AREA'
PRECISION = 'PRECISION'
LOC = QgsApplication.locale()
def translate(self, string):
return QCoreApplication.translate('Processing', string)
def tr(self, *string):
# Traduzir para o portugês: arg[0] - english (translate), arg[1] - português
if self.LOC == 'pt':
if len(string) == 2:
return string[1]
else:
return self.translate(string[0])
else:
return self.translate(string[0])
def createInstance(self):
return MeasureLayers()
def name(self):
return 'measure_layers'
def displayName(self):
return self.tr('Measure Layers', 'Medir Camadas')
def group(self):
return self.tr('LF Effortlessness', 'Mão na Roda')
def groupId(self):
return 'lf_effortlessness'
def shortHelpString(self):
txt_en = 'This tool calculates in virtual fields the lengths of features of the line type and the perimeter and area of features of the polygon type for all layers.'
txt_pt = 'Esta ferramenta calcula em campos virtuais os comprimentos de feições do tipo linha e o perímetro e área de feições do tipo polígono para todas as camadas.'
dic_BW = {'face': 'iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAYAAAByDd+UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMMwAADDMBUlqVhwAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAIUSURBVEiJvZa9quJAGIbfMfEYTUSUQAqLYOnehJobsBTlHLbRQtKKlY3lObegxRa7pRdg7y0saiuoKAErMZif2Squ2eTEOCfsC1Pk+3uYb2YyQwCg1+u9UUqHAKoAOCQrB8ASwPt0Ov1JdF3/bprmj4QhoXp5eXnjTdMcUEr/Bw+WZQ15Smn1q4UIIZBlGaIoghBys2+3W1yv19u367rfeAAc6ww5jkOz2USj0YAoigH/aDTCbrfzpfCUUrAC2+02NE2LjPm3NjNQkiTU6/WHsFAgi1RVRSqVCthd171BwmozA/P5fMA2n88xm81g2zYAwHGccCAL9H43elosFrhcLpE5zMCwHMdxImtRSp8DptNpZDIZAIAgCAG/IAi+42Ga5q29nkin06FxgZqmodvtxooFgPF4jPV67bM9NcNnW384HJI7h49kWRZOp9PXgOfzGfv9HgCQy+VQKBR8fsMwYFkWAOB4PMJ13UAN0mq1Yq/hfVytVoOu6z7/YDDAZrP5Wzzk6CR6LOLEJLqGcWrxYX2OW5wJmOQOjQX0ApOERgIrlQoTUJblgK1cLodeWZ4IIeDDngZx5P1T75XNZiFJUmQeTyl1wPAW/awrD7rlpDiOW3qL/cz4DBY1CCG/U4qifDw7O1YpivJBAGAymbwahjG0bbtKKeXjJJdKJaiq6rOtVqvAjU8IsTmOWxaLxfd+v//rD1H2cZ8dKhk8AAAAAElFTkSuQmCC', 'github': 'iVBORw0KGgoAAAANSUhEUgAAAB0AAAAdCAYAAABWk2cPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMOwAADDsBdtCd4gAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAW2SURBVEiJrVZdaBNZGD33TpL+RosxxWZSu7ZpDYQ1CPVBUSws2Cq6sPWvFW1BQcyKaOnDwvqgQvFh6ypoFn3xUd1OygrarK6UKoq7FAqFVWulKba1rtVgW5PWZjqZ++2DTjY/av3ZA8Mw3537ne+c+829w/ARIKKFQ0NDG/v7+zeEQqGysbGxopmZGVteXt5Lh8PxrLy8fNDtdgdlWe5gjL2cKx/70GAkEqkIBoMtiqLU9vX1SVNTUxBCQJIko5g3SRiD1WqF1+vV6+rqfqupqTmcnZ098EmkRGS5cuXKTydOnPh+cHDQzDlPHgPnPEGYSMQYhBBgjMHtdmuHDx/+paqq6gfG2OycpJFIxHbkyJH2QCBQ9SEX5gLnHHv27Pmzubm5Nj8//3nymCn5YWxsrLCxsfGv7u7uUkmSMtR8CoQQOHfu3KqRkZG70Wh0pdVqDWeQEpF569atSnd3d6lhn67rifX7GBhFCiHAOYfJZMK1a9fKOOeXiegbxpgKAImMmqad7Ojo2A68WZ/169fj4MGDyM3NxdDQEDRNA2MMRAQhRILEWEcAsFqt2LZtG/bt24eJiQmMjo6CMYZHjx4tNplMedevX/8DeLumd+7cqdixY8d9IjIzxqBpGi5cuIC1a9cCAEZGRuD3+6GqKjweDwoLC2E2m6GqKl68eIF79+7Bbrdj//79sNvtYIxBURQ0NzeDMQbGGLKysrT29nbP8uXLB0wA0Nra2kJEZqN6zjkWLFgAo2uXLFmC1tbWhCLjnm6t0cEAYLfbEzEAiMVi5jNnzrQA2M47Ozttvb293xmTjZfGx8cTVQJvujH5OR3J73HOMT4+nhJnjOHmzZube3p6FvJgMPitECK5oZCVlYX8/Pz3d8wcEEIgNzcXFoslpShVVaXOzs4NksVi+XFyctKTTFpfX4+Ghob3qpoLRASXy4W+vj6EQqEUtZqmxfmTJ09cyRMkSUJ9ff1nkRkwLN65c2fiMzLug4ODX3MhRFHyJjBv3jyUlJR80cYAvFFVWlqKnJyclHgsFnOYdF1fkGyjyWSCJEmfbS3wnyqLxZJoQANCiDwOIOUoisVieP369f+iNBKJQNO09FzTnHP+LDkyNTWF4eHhLyYUQiAUCkHTtJQxk8n0D8/Ozh5MnxQMBqHr+hcTX716NcVaxhjmz5//N3e5XL+nW6koCoaHhz/bYiJCb28vbty4kRIXQmDp0qUdfPXq1VeJKG5s5gAwPT2NvXv34vHjxymJPhYPHz6Ez+eDqqrpxejV1dW/MwAoKytTVFXd6vV6sWbNGly+fBmjo6Ow2WzYtWsXamtrUVxcnOjE9D8JXdcTa9je3o6LFy9ienoayUIAoKCgQLl///52AIDP5yuVZVldtmwZBYNBGhgYoI0bN5IsyyTLMpWUlNCqVauoq6uL4vE4paOtrY0qKytp8eLF5HQ6SZZlcjqdKZfD4Zg9evSoC0j6XfF4PKdevXp1yGKx4NKlS4jH4/D5fAiHw+Cco7CwELdu3YLVak1pDiJCOBxGVVUVotFoip3JShctWnSyp6enGUg6xFtaWrpu3769Rtf1r54+fYrdu3dj5cqVKCoqgsfjQWNjI9xud8ZJwxiD2WxGMBhEOBzGuyBJ0t1jx441BAKBzE/i+PHjdofDEXI6nXTq1CmKRqM0MzNDExMTFIlESNd10nU9w97Z2VmqqanJsPSt1aHTp0/bUxx4B7Ht7Nmz7URUVV5ejhUrViAnJwcFBQU4cOBAxrYGAJqmYdOmTXjw4EGKA5zzu01NTZsPHTr0PJ0nA4qiWLxe70mHwzEryzI5HA6qq6sjTdMyVBpKq6urqbi42FA3W1lZ+bOiKJY5ydLR1NTkqqioaCsqKopv2bLlg6Tr1q0jWZY1j8fzq9GlXwS/328LBAIN8Xi8Tdf1fiKafMs3KYTo13W97fz58w1+v9/2Mfn+BQw/D7WnyIOMAAAAAElFTkSuQmCC', 'instagram': 'iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAYAAAByDd+UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMOQAADDkBCS5eawAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAYPSURBVEiJlZZNaBRbFsd/VXXrI23sDtrRCQkkGkleFHlKiEj8wIgTF0Igs4nzcDFjCOqmdwrPjczmCW4MuDEoM7pQlw6unPEZhRCVKL6gsUmItKhh8tV+JN2d/qiuurNwbk118h7MHLjU17nnf//3/s85pfEfu3z5clsymfxRSvl7TdM2Syk1KSVhU8/q6vt+cJVSIqUM7n3fl8CclPLn3bt3/3T+/PlJAA3g3Llzf5ibm7sFOJqmVQQOP68G/a0RNk3TAApNTU1/vHTp0t+1oaGh7x49evQL4CiAMFgY5NdYhv1+BSj8nO/p6fle6+vr+1upVPrTaucNGzZw5MgR2traiMfj2LaNYRjoul4RyPd9PM+jUCiQTqdJJpMMDw+zvLy8BjgSifxV6+3tnZFS1ofBuru7GRgYwDCMNSv/X6xUKnH16lVGR0crQKWUMwL4XXjVnZ2dnD59GiklDx48YHR0lPn5eQqFAp7nBaJQpus6hmEQiUSoq6vjwIEDHDp0iEQiQTab5dWrV+GdqzO2b9/+F03T0DQNIQQXLlzAcRwGBwe5d+8e6XSaQqFAuVxeA+j7Pr7v47ou+XwegJGRET5//kx7ezutra3cv38/DPiNmjr4HTt2EIvFSCaTPH36NHD8DeWhaRq6rqPrOj09PVy5coWzZ8/y8OFD3r9/z6ZNm2hqaqoQnwgf6rZt2wAYHx+vOGx1H4vFOHjwIFu2bMH3fVKpFCMjI+RyOTZu3AgQXMfHx2lsbKS5uZl3794FcYS60TSNWCwGwKdPn9YIoauri5MnT2KaZvBu//799PX1MTQ0xJ07d0ilUrx58wZd1/ny5QsA0Wi0Io5QYAC2bQPfVBZmt3fvXk6dOgXA48ePefHiRfB+3759JBIJLl68yMjISBCrWCxWxAy2NIyu0sDzvGCiEIL+/n4ABgcHefbsWeD//PlzkskkAwMDDAwMkEgkAj14ngdQkbeapqErhuGkNgwDy7KwbZtdu3axfv16JiYmGBsbW1NBhoeHSaVSxONxmpubAyaqzoYBpZTopmli2zaO4wQMLcuiqqoKx3FobGwEYGpqCsdxsG0b0zSDQFJKJiYmAGhoaGC1KSUHO+Y4DkIIdF1HCBEAOo5TMXHdunXYto2UEs/zgrwsl8uBr+u6awBVSqkmoKtVO44TrNo0zYDN7OwsAO3t7UQiEWzbDvwtyyISibBnzx4Apqen1wCGTdd1dDU5DBgOuri4yOzsLLW1tRw/fpyqqips28ayLKqrqzlz5gw1NTUkk0kWFhYqGIUZKhOqC4QLtWKn+tvdu3fp7++no6OD1tZWpqamAGhra6O6uppsNsuNGzcwTRPXdZFSBvlaLpcrWpiwbTsowErKkUgEy7KCFWYyGW7evMmxY8eor6+no6MjWNzbt2+5desW2Ww2mOO6LlVVVQAUCoVKhqZpBqLJ5XIAxOPxCkAFevv2bWpqaqitrcXzPD5+/MjCwgKu62KaZkXXr6urA/5btRRLYVlWsKXz8/MAtLa28vLlyyCXVBDP88hkMnz9+pVyuUy5XA62LgxmGEYgpMnJyUqGlmUhhMAwDHK5HOl0mng8TldXF2NjYxU/RyoNXNelVCpVCEMNXdc5ceIE0WiU169fk06n14jGM03TMAwDIQRjY2McPXqUlpYWGhoamJmZIZfL4bourusGoGookQghqKmpYefOncRiMTKZDNeuXVv9b+QJx3HmTNOstywL0zTxfZ8nT54EJa2lpYX/11KpFNevX2dpaWl1m/uXiMVi/wT+rEqWEALf9xkfHycajRKNRlFKBsL/nQHLUqlEPp9ncXGRyclJPnz4QLFYDOqz0sLmzZv/oaVSqdbp6elfTNOsMk0TtbXhtqWAFIg6w2KxSKFQYGVlhVwuRzabJZPJkM/ng2+FQgHXddE0bSWRSHwvtm7dOpVMJn9YWlq6I4RwVIqEC+5qQCUy5RNWsTpr13XDcfLd3d0/dHZ2vg0iptPp7+bm5n7UNO2IEKJO+2Zr0iKs1GKxSLFYJJfLsbKyQiaTYXl5WQ25srIya9v2z729vT8dPnx4CuDfBIhl1RKmcgQAAAAASUVORK5CYII=', 'lattes': 'iVBORw0KGgoAAAANSUhEUgAAABgAAAAdCAYAAACwuqxLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOEwAADhMBVGlxVAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAd/SURBVEiJlVZ7TFTZHf7ua+bOzJ0XwyLDIDLy1oFVg7E2RmPMUmxNscaiQqON0mA0YYORtG7ShFTjxk37h8bQpVmN2d2EdnzABjF2C/VRX2BFVBAyQJPOiEuBGWa4zMy9d+7c0z/Wob5i7C+5ycm5Od/3+53z/b5zKLwUhBD9/fv3a7q7u7cODg7+QBRFi6qq3MzMzCxN036DwfA4Kyure+XKlX9ramqawnsElRoEg8Hlx44du9DX11fMcRxSH0VRCAaDAACO46BpGliWJYSQRzzPX6yoqPjq8OHD/34nQSgUymlqavrn+Pj4B7IsI5FIgBACvV4Po9EISZKgadrDrKysL/Lz8+/yPD/c3NwsvU8FLAC0tLR8pqrqBy6XC4qiQFEUSJKE2dlZxGIx4vF4PmltbT1BURR5H9BXKhgYGFh+/Pjxx3q9nibk+/UMw4AQgtnZWQiC8FlbW9uv/1/ghQouXrxYJYoiPTMzAwDQ6/Uwm80wGo3gOE7au3fv8ba2NkxOTmacO3fuN0NDQyv1er1aUlLyoKqq6ov8/Pyxd1awefPmv87Pz1cAgKZpSCQSMBgMcDgckGX5H11dXevD4bC9vr5+wO/358iyDJ1Oh2QyCUKIUlNT88mhQ4f+AACnT5925Ofn6yorK79LEdCqqi4zmUwwmUwwGAzQ6XRQVRWapgHAJABcuXLlF3Nzczkcx4EQAo7jYLFYYLVadZ2dnb8/ceLEAQDIyMgIt7S0eG/dumVeIDCZTBae56HT6cAwDFiWhcViSW2TDgDC4bDdYDCAoijQNA2DwQCbzYa0tDRYrVbcvHnz02vXrgnV1dVJQRDYo0ePnieE0ABAC4IgpDLneR4OhwPp6ekQBAFGozEDAMrKyv7udruRTCbBcRyMRiOMRiP0ej1YlgUhxHLnzp01AFBaWjo+Nzf3o507d/4KAGiLxRLPyclBdnY2cnJy4HK5kJaWBo7jwLJsmdfrZdatW3crHo//ZdOmTeB5HizLQhRFiKIIRVGQTCYhSVIMABwOxzwhBD6f79OrV6+m0UajUfR4PCgpKUFeXh6cTidsNht0Oh1kWTY9efJkFQA0NTX9MhaLtW3duhWPHj3CkydPEA6HEYvFEIvFehmG6QWAYDCYlUwmQdO0vb29fSdLCPlPUVFRZiQSQTAYRCgUWuiBeDyO4eHhnwG473a7JQA1Z86cObdjx469/f39uaFQiFZVtWf37t1H6+vrtXA4bK+trd2oKApYlsXjx49/zjIMM2i1Wj+UZRksywIAUnZht9sRCAR2er3e31ZXVycBYN++fd8C+PZlrd++fRuEEObkyZNfhkIhgRACTdOgqmo+7Xa7ByVJAk3TMJvNcDgcsFqtyMzMhF6vx+TkpLunp2fLu5qJEKI/e/bs152dnVt0Ot2CKaqqmsauX7/+dF9f33WGYYqj0WhRPB4vtNlsRU6nM9/hcOhlWcbo6GgjgG/eBj40NLSioaGh5cKFC2uLi4vBsiw4jkMikQCAZ9S9e/cKent7Py4sLLztcrkelpaW/ouiKMXr9TIAciRJKpyamiosKCg4V1VVJb44SMv169c3dXR07B0bG/sxx3F0X18fsrOz4Xa7EY1GEYvFwHHcRYoQQh08eHDo1KlTJRMTE+jv709OT0/7o9HoaDQa9SeTyaimaTJFUbaRkZG0sbGxoufPn5eIosgSQrB69WooioLe3l7YbDasWLECkiQhHo+jvLz8pyxFUaS1tfXzBw8enCwvLwdN04zf73cPDQ25fT4fpqamMD8/j2XLliEQCGBiYgKyLAMA3G43BEHA8PAwAEBVVSSTyZTNjDqdzi4aACoqKr7s6OiI0jQNnudht9vhcDhgMBjA8zwAQBAErFq1CsXFxXC5XPB4PMjNzUU4HEYgEABFUWAYBvF4HIqiIC8v73fNzc0a/SKTMCGkbXJyEmazGenp6XA6ndDr9UipIhKJgOd55ObmYsmSJSmFYWBgIJUxDAYDJEkCwzBdXq/3awCgU2qoqqr6Y3t7+8I1mZGRkbILMAyDZ8+eIRqNQhRFxGIxzM7OwufzIZFILJigy+WCyWSaPXDgQP2Cm6YGa9eu7X/48GGvLMsL5brdbrhcLmRnZ8NgMCAajSISiSAQCMDv9yOZTC7IdfHixRAEQdy+fftP9uzZM/EGAQBs2LDhdE9PD1RVhaqqC8ZnMpmgaRp8Ph/Gx8chiiIoigJFff8osdlsWLp06diuXbt+2NjYePdlzFcIamtrvZcvX56UJAmyLIOmaTx9+hSjo6OYmJhANBp9o9GcTmdizZo1p44cObKyrq5u8PX/rxBQFKUsWrToTyMjIwiFQohEIjCbzdA0DakHAQDQNA273U48Hs/VhoaGDzs7Oz/euHHj/BvsrxMAwJYtWz7v7u5WUsaXmZm5oO0XV6VcUFDw1f79+8vu3r27ubGxcfhtwKlgX58oLy//rq6u7oKiKDXT09MIBoOgKErhOO7G8uXLv6msrPzztm3bgjdu3HgX7v925W2Tly5dWnv+/Pm29PT0m7m5uV1lZWVXP/roo8h7Ib4W/wW5PFM4xqdwfQAAAABJRU5ErkJggg==', 'linkedin': 'iVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAYAAACpSkzOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAM6QAADOkBmiiHWwAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAJRSURBVEiJ7ZU/aCJREMa/t7soa5LOoGihktZOQSxSWykBIYVaWZ6NVa6wSZ/WI5BGziJypA1CQBLsgkKKgBjFQkEtkouJ+AdxdeeKnHvurXdcXK84uK/amfl4v9m3s++xbrdrury8PGm324dEZMYGxRj7arPZvoRCoSPh/Pz8pFqtftgkYEnmTqeT6PV6xDscjs9EZPpLIADAy8uLS5jP52bGGACA4ziEw2H4/X5IkoSrqytcX1/rBhHRrrCcCAaDCAQCShyJRPD6+oq7uzvdMG458Hg8GoPX69UN0YDG47HGsCqnG5TP50FESjyZTFAoFDYCYvF4nBbDAAB7e3vw+XyQJAnFYhGPj4+6IUQE4eekJEm4vb0F8DaFC1mtVphMb3+BLMtotVogItjtdjgcDhiNRvT7fTw8PKzcbhXI5XIhlUqpOkkkEpjP5zg+PoYg/LCfnp5if38fbrdbteB0OsXFxQVubm5+DTIYDKoiYww8z4OIwPO8qhaLxbCzs6Pp3GAwIBqN4vn5Gff390qe0zj/UKsgywqFQqpY843eo1KphHK5DLPZjIODAxiNRqXmdDqxvb2N4XCoD1Sv13F2dqbEs9kM0WhU5bFYLApo7a1bTOZClUpF49na2lKe1wb1ej1VvGqklwdobdB79R/0j4FkWdYYiEh1dawrAcATgF0AaDabyOVyyuE5HA4xmUwAAJlMRjl2ZFlGo9FQLTQajZDNZiGKouKp1WqL8hNLJpPpwWCQ0N3ybySKYpqLxWJHjLFP399s03riOC4dCAQ+fgMeouMzfwx22gAAAABJRU5ErkJggg==', 'RG': 'iVBORw0KGgoAAAANSUhEUgAAAB4AAAAcCAYAAAB2+A+pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMfwAADH8BdgxfmQAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAM2SURBVEiJtZdLSytJFMd/1dXB+OiQRJEQBEnbPgISJGIQcePKjyBZzoP5AH6OuR9gFjPMznwC1650EbKSy00WPhJ8EMlDtG1M0p2axZCA1871cZM/NDRFnfqdqjrnVJUAODg4+E0IsQ8sA5LRyANKQogve3t7/4hcLvcH8NeIYL5SSv2uAftDHhSl1A/7CCH2dWBxWNBoNIppmgSDQarVKufn53ie59d1RQO0YUBjsRg7OztomkatVmNpaYnNzU2EEH7dNX0YUKUUpmlyd3dHPp9HKcXV1RXT09MIIXyXfihgKSWGYVCpVPoQ27axbXugjS/4HcHh29btdlFKsbq6SiwWA6BQKHB/f/82WEpJKpUiEAi8aA8EAiilaLVaNBoNrq+vabfbr+BCCG5vb3l8fCSTyaDr/ov6KrA8z6NcLtNqtUgkEszPz+M4Ds1mE9u2MQyDjY0Ndnd3mZmZ6ds4jkMoFAKg0Wjw8PCAEIJOp+ML9nWnZ5hIJJBSUiqV+gMIIbAsi3Q6zdbWFoeHh7iuS7lcZn19HcdxsG0by7Ko1+sD93lgcCml6Ha7SClftZ+dnbG4uIhhGMzOznJzc0OlUkHTNBYWFtB1nXq9zunp6aA8/lxUe57H09MThmEwPj7ed+ji4oLLy0uEEHieNyiHPw+WUjI5OYlS6lXE9krmj6DwyaplmiaGYVCtVqnX658Z4u0ZCyGIx+O0223GxsaYm5sjHo9Tq9U4OTn5FPRdYCkly8vLCCEIh8MopSgUCpTLZVzXHR3YdV2Ojo7wPI/t7W1isRjBYPCnoPDOPVZK4XlePz2SySThcHj04J4ajQbFYhEpJZlM5lWOjwwMUCwWaTabRCIR0un08MG9gt/778l1XfL5PJ1OB9M0WVlZGR54amoKy7IIBoPouo5lWYRCof7SNptN8vk83W6XVCrF2toaExMTHwKLXC734vCVUpJOp9F1/cW5rGkapVLpRcGIRqMkk0kikQiO43B8fMzz8/O7wd73Mx90EfArg0opNE178/LwnboaUPID+H2DnPkgFOCbppT68lGrn5VS6k8tm83+DfwKfOX/Z8ao5AFflVK/ZLPZf/8DudZq3wvXLmgAAAAASUVORK5CYII=', 'tweeter': 'iVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAYAAACpSkzOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMMQAADDEBLaRWDgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAK5SURBVEiJpZU7T+NAFEZP4kAePBwZ8TA0EUIRKKIgQhSImnZ/wDYr7Q/barddbRu2QVAQhChAgBQqQClwFEIcx8IYfLdKNk5sJ4GRRh6PPN+Z+90749jZ2VnGsqyfwD6QEREARISocdRcT7dF5AD4lmi327+AL0GCn4QgIhkR+SIiPxIish8k3i/yQVCn7ydEJD0sgjDBMUCZxCg2hQmqqsri4iKKotBoNKhWq741vesSvULpdJrJyUkajcZQy7a2tlheXqa3FQoFzs/PmZubQ9M0Dg8Pu2vivQJLS0sUi0Wy2WykFfl8fgACkEql2N3dJZfLcXFxgaqq/0G9O04mk8RiMba3t8nlcqHRrK6uDkB628TEBDs7O5imORgRgGVZ3Y/z+Tx7e3ssLCz4QMlkkng8HglqNpscHBzw9vbmz1EHVK1WWVtb6wpNTU1RLBZ5f3/HMAzq9TqO40RCAGq1Gq7r+jboK4aZmRmurq7Y3Nz0LVQUBV3X0XV9KATAcZwBy7vlLSJomjbU/1Ha8/PzAMhXdQ8PD5+GABiGEQ1qt9tcXl5+CvL09MTLy8ugdf0T9/f32LbNxsYGs7OzY4Our68DD/oASEQoFApMT0+PDTFNk7u7u0BQPAhULpdxXXds0PHxMZ7nDUBCQa1Wi1KpRKVSwTTNkSAnJyfU6/XQWz4QJCI4jsPj4yOKogyFnJ6ecnt7G3nTd3OUSCSYn59HURRUVUXXdTKZTCTAtm2Ojo585dwP6rx3Qa+vrzSbTdbX11lZWSEWi4UCLMvi5uaGSqWC53mh/67esa/qTNOkXC4DoGka2WyWVCoFgOu6tFotDMPAtu3QXISNA8tbRKjVaoEnPCwPYZZ1nnHP8+ww2Ed7P0RE7LjneX/7ff6ocES0pbiIfBWRP57n2aMAwywKGdsi8ltRlO//AFPkniYXwGRMAAAAAElFTkSuQmCC', 'udemy': 'iVBORw0KGgoAAAANSUhEUgAAAB4AAAAdCAYAAAC9pNwMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMOgAADDoBpJd/BgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAYHSURBVEiJlZdbTFNbGsd/e/cCFtpgxX0sjHgJoepBJcqMl4gGjoYTb5PRYZxEMmq8cI5Oosw8ODG+iJpMHGN0Hsz4QHwwmRgLHpJjqkDqQZ+QWEWisdEIRZoKtAKFFuxt73nQ3aG05pT/2/rW5fd93/rW2msL/Lo0gO727dtlc+fO/cFoNK41mUzzjEajMR6Py6Ojo4FgMPjR4/E8fv369fULFy70A1EgnsHaaSVarVbj3bt3L/b3948pGSgWiylPnz71nj9//kcgBxBnC9Vfv379QG9vb0bAmZJlWXn06NFATU1NFaDPFDrn5s2b/56ampIVRVGCwaDS2NioNDQ0KG1tbbNy4MOHD7H6+vp/AHNmQjQzoXfu3Gnav39/rVarFQCam5vp6ekhHA7jdrtZs2YNBoMhowhyc3PFLVu2fOf3++c6nc5fgFg6sP7atWv/OnjwYK0gCAD4/X5aWlqQZRkARVEoLS3FbDZnmj20Wq2wcePG375582bM5XI5+VJ06uaLdXV1fzh27NhfRfH/9dDe3k40Gk20BUFAp9N9FdLd3c2VK1e4desWk5OTCbvZbBYaGhr+aTQaf6cyVYqhpqbmWnZ2tqAO7u3t5fnz5zO9Z968eWmhIyMj2Gw2vF4vL168wOFwJPWvXLlSe/z48f8ABhWsPXXq1Mmqqqpv1EHhcBibzZZIsSpJksjNzU0LfvjwIeFwONF2uVwoipI05uTJkyskSfo9oBUB/fr16+vUfVUUhaamJnw+X8riJSUlaaHDw8M4nc4kWzAYTNomAIvFIuzYsePvgF7MysqyVFRUFKqdbW1tdHd3pwVYrda09pm1ACDLckrGAKqqqr4FFmh37979l4KCAlFRFFpbW3E4HCkpAtDr9SxatCjF7vF46OnpSbGnWwOgsrJSB3ynlSTp28nJycR5/dqEoqKitBXd2tpKPJ56LSuKkjZii8UiZGVlWUWz2fwbv9+fBJ1+pFQtXbo0xfbu3TtcLhcA8+fPT5ony3LaIERRZMmSJUtEILeoqIjt27djtVrZtm0bmzdvTpmwePHilIju3buHoigIgsCmTZuS+mOxGJFIJGUOQFZWlln0+/1+gMrKSo4ePUp1dXVKRQuCQEFBQZKts7OTgYEBABYuXMiKFStQT4YKmX6JuN1uLl26xPj4OH19fV7t8PDwwMzoPB5PUttoNJKTk5Noj42Ncf/+/YRTW7duJScnB51Ol7Tfb9++JT8/n66uLux2O9FolIGBAWV8fNyjffz4cWcoFKpVFw6FQoRCoSSwwWBg+jlvbm5ORFNcXMzy5csRBAFJknj//n1int1ux+FwMDU1BYDJZKKvr08B3oo+n8/e3t6eOISRSCSlGqcXSUdHR6KgNBoNO3fuTDhVXl6eNE+W5QRUEASqq6ux2+2fAIcIDLW3t7vUwRqNJmmvAD5+/Mjg4CBOp5MHDx4kHKmoqKCwMHH3sG7dOpYtW8ZMZWdns2fPHsrKyrDb7Z3AkABo9Xr93q6urv+uXr1alGWZc+fOpaR7eqrhc0GdOHECrVabkp1Xr17hdruRZZkFCxZQWlqKwWDg6tWr0fr6+v3ATxpAjsfj/YFA4Pu9e/cWCILA0NAQXq83xXNVeXl5HDlyJKngpjsoSRIlJSVYrVYKCwvR6XSMjo5SW1vbMTExcQH4pD4EYi9fvnxZWFj457Vr1+osFgvPnj1LuX/h8xfq8OHD5Ofnf9WxmZJlmQMHDow9efLkCOAGFBWs8Hmv+8vLy3etWrVKLC4uxuv1MjExgSAImEwmNmzYwL59+8jLy8sYCnD27NlPN27cqAMcTHv+TNcci8VypqWlJaK+FgOBgDIyMqJEo9FZvzZjsZhy5syZSeBvpHnwpcA1Gs2fLl68OBaJRGYNU+Xz+eRdu3YNA3/MBKpKD5SVlpb+3NjYGI7FYhkDg8Ggcvny5U+SJDUDZcziXa1K5PPfQGVZWdnPp0+fnujo6IgHAoEU2ODgoGyz2WKHDh0as1gsTcAWfuVPQvhaxzRpAB1gBNZ9iUISRfGbLzfcIDAMvACeABNk8O/0PwJCxMb99V7LAAAAAElFTkSuQmCC', 'youtube': 'iVBORw0KGgoAAAANSUhEUgAAACEAAAAaCAYAAAA5WTUBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMNwAADDcBracSlQAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAKkSURBVEiJxZcxSBthFIC/918uGhxMsyptcGjoIgGHW9wSihQKGZrNthHsIC7S1TqWgkRwcZV2lKo0FouixaEuEQ4khIIdrClkEoIZgiae93fQgFgll5jqt93x3v++e3f/3TvhGgYHBx/UarUUEAMeA48A/3WxDagBf4A9EdmsVqsfd3d3j64GyeWDZDJpFAqFKWAC6G6haCPKIjKTzWbfA+4/Ev39/V2dnZ3LwNP/UPwqaycnJy9yuVwFQF2cVIFA4PMdCQAMBQKBL8lk0gAwACzLmtJav7kjgTp95XK5ViwWf0g0Gg36/f7fQLBRltYaEWkU5hkRKTmO06dM03ztRaAuEQ6H0Vq3RUJrHTIM46XR29v7jvNt2BClFEtLS0QiEfb39ymVSrfujIg4Cog0mxiPx1lYWGBycpKenh5c122cdANa64gCHra6QCKRYHl5mfHxcYLBII7jtLJMWAEdrUrUSaVSrK6uMjo6SigU4uzsrJn0DtU4xhs+n4+xsTFWVlYYHh6mq6vL821qm0Qd0zSZmJggk8kQi8XuR6LO1tYW+XzeUzd87S6ey+WYnZ0ln88jIijV+DrbJnF4eMj09DTb29u4rtvU+8MHVLnFDjk+PiadTrO+vs7p6WkrS1R9QAGPb8zLaK2Zm5tjcXGRSqXiqe03sO8D9pqVyGQyzM/PUywWMQzjNgIAv3xa600Ree4l2nEcRkZGODg4QCmFYRi3KQ6AiGzIwMBAt2EYB9znp9y27bLWesZjUtsELkjbtl2ur6osy/qqtX7W7io3ISIb2Wx2CHDrT5TrOE4SWLsjgW+O4yS4mLiv9ldZljWptX6Lx2mrSY6A9M7OzgeuG/kvE41Gg6ZpvhKROPCE85mj5Z8fEfnpuu5313U/2bZdvhr0F9Fo9phaoDu9AAAAAElFTkSuQmCC'}
footer = '''<div align="right">
<p align="right"><b>'''+self.tr('Author: Leandro Franca', 'Autor: Leandro França')+'''</b></p>
<div align="right">
<a target="_blank" rel="noopener noreferrer" href="https://www.udemy.com/user/leandro-luiz-silva-de-franca/"><img title="Udemy" src="data:image/png;base64,'''+dic_BW['udemy']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://www.facebook.com/GEOCAPT/"><img title="Facebook" src="data:image/png;base64,'''+dic_BW['face']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://www.youtube.com/channel/UCLrewDGciytcBG9r0OxTW2w"><img title="Youtube" src="data:image/png;base64,'''+dic_BW['youtube']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://www.researchgate.net/profile/Leandro_Franca2"><img title="ResearchGate" src="data:image/png;base64,'''+dic_BW['RG']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://github.com/LEOXINGU"><img title="GitHub" src="data:image/png;base64,'''+dic_BW['github']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://www.linkedin.com/in/leandro-fran%C3%A7a-93093714b/"><img title="Linkedin" src="data:image/png;base64,'''+dic_BW['linkedin']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="http://lattes.cnpq.br/8559852745183879"><img title="Lattes" src="data:image/png;base64,'''+dic_BW['lattes']+'''"></a>
</div>
</div>'''
if self.LOC == 'pt':
return txt_pt + footer
else:
return self.tr(txt_en) + footer
def initAlgorithm(self, config=None):
units_dist = [self.tr('Meters (m)', 'Metros (m)'),
self.tr('Feet (ft)', 'Pés (ft)'),
self.tr('Yards (yd)', 'Jardas (Yd)'),
self.tr('Kilometers (Km)', 'Quilômetros (Km)'),
self.tr('Miles (mi)', 'Milhas (mi)')
]
units_area = [self.tr('Square Meters (m²)', 'Metros quadrados (m²)'),
self.tr('Hectares (ha)', 'Hectares (ha)'),
self.tr('Square Kilometers (Km²)', 'Quilômetros quadrados (Km²)')
]
self.addParameter(
QgsProcessingParameterEnum(
self.DISTANCE,
self.tr('Distance Units', 'Unidade de distância'),
options = units_dist,
defaultValue= 0
)
)
self.addParameter(
QgsProcessingParameterEnum(
self.AREA,
self.tr('Area Units', 'Unidade de Área'),
options = units_area,
defaultValue= 0
)
)
self.addParameter(
QgsProcessingParameterNumber(
self.PRECISION,
self.tr('Precision', 'Precisão'),
type = 0, # float = 1 and integer = 0
defaultValue = 3
)
)
def processAlgorithm(self, parameters, context, feedback):
units_dist = self.parameterAsEnum(
parameters,
self.DISTANCE,
context
)
units_area = self.parameterAsEnum(
parameters,
self.AREA,
context
)
precisao = self.parameterAsInt(
parameters,
self.PRECISION,
context
)
# Transformação de unidades
unid_transf_dist = [1, 0.3048, 0.9144, 1000, 621.4]
unid_abb_dist = ['m', 'ft', 'yd', 'Km', 'mi']
unid_transf_area = [1.0, 1e4, 1e6]
unid_abb_area = ['m²', 'ha', 'Km²']
unidade_dist = unid_transf_dist[units_dist]
unidade_area = unid_transf_area[units_area]
field_length = QgsField( self.tr('length', 'comprimento')+'_'+unid_abb_dist[units_dist], QVariant.Double, "numeric", 14, precisao)
field_perimeter = QgsField( self.tr('perimeter', 'perímetro')+'_'+unid_abb_dist[units_dist], QVariant.Double, "numeric", 14, precisao)
field_area = QgsField( self.tr('area', 'área')+'_'+unid_abb_area[units_area], QVariant.Double, "numeric", 14, precisao)
camadas = [layer.name() for layer in QgsProject.instance().mapLayers().values()]
num_camadas = len(camadas)
total = 100.0 / num_camadas if num_camadas else 0
layers = QgsProject.instance().mapLayers()
for current, layer in enumerate(layers.values()):
if feedback.isCanceled():
break
# check the layer type
if layer.type()==0:# VectorLayer
# check the layer geometry type
if layer.geometryType() == QgsWkbTypes.LineGeometry:
layer.addExpressionField('$length'+'/'+str(unidade_dist), field_length)
if layer.geometryType() == QgsWkbTypes.PolygonGeometry:
layer.addExpressionField('$perimeter'+'/'+str(unidade_dist), field_perimeter)
layer.addExpressionField('$area'+'/'+str(unidade_area), field_area)
feedback.setProgress(int(current * total))
return {}