-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrescaleTo8bits.py
274 lines (237 loc) · 25.2 KB
/
rescaleTo8bits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# -*- coding: utf-8 -*-
"""
rescaleTo8bits.py
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Leandro França'
__date__ = '2020-12-21'
__copyright__ = '(C) 2020, Leandro França'
from PyQt5.QtCore import QCoreApplication, QVariant
from qgis.core import (QgsProcessing,
QgsFeatureSink,
QgsWkbTypes,
QgsFields,
QgsField,
QgsFeature,
QgsPointXY,
QgsGeometry,
QgsProcessingException,
QgsProcessingAlgorithm,
QgsProcessingParameterString,
QgsProcessingParameterNumber,
QgsProcessingParameterField,
QgsProcessingParameterBoolean,
QgsProcessingParameterCrs,
QgsProcessingParameterEnum,
QgsFeatureRequest,
QgsExpression,
QgsProcessingParameterFeatureSource,
QgsProcessingParameterFeatureSink,
QgsProcessingParameterFileDestination,
QgsProcessingParameterMultipleLayers,
QgsProcessingParameterRasterLayer,
QgsProcessingParameterRasterDestination,
QgsApplication,
QgsProject,
QgsRasterLayer,
QgsCoordinateTransform,
QgsCoordinateReferenceSystem)
import gdal #https://gdal.org/python/
from osgeo import osr, gdal_array
from math import floor, ceil
import numpy as np
class RescaleTo8bits(QgsProcessingAlgorithm):
LOC = QgsApplication.locale()
def translate(self, string):
return QCoreApplication.translate('Processing', string)
def tr(self, *string):
# Traduzir para o portugês: arg[0] - english (translate), arg[1] - português
if self.LOC == 'pt':
if len(string) == 2:
return string[1]
else:
return self.translate(string[0])
else:
return self.translate(string[0])
def createInstance(self):
return RescaleTo8bits()
def name(self):
return 'rescaleto8bits'
def displayName(self):
return self.tr('Rescale to 8 bit', 'Reescalonar para 8 bits')
def group(self):
return self.tr('LF Raster')
def groupId(self):
return 'lf_raster'
def shortHelpString(self):
txt_en = 'Rescales the values of the raster pixels with radiometric resolution of 16 bits (or even 8 bits or float) to exactly the range of 0 to 255, creating a new raster with 8 bits (byte) of radiometric resolution.'
txt_pt = 'Reescalona os valores dos pixels de raster com resolução radiométrica de 16 bits (ou até mesmo 8 bits ou float) para exatamente o intervalo de 0 a 255, criando um novo raster com 8 bits (byte) de resolução radiométrica.'
dic_BW = {'face': 'iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAYAAAByDd+UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMMwAADDMBUlqVhwAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAIUSURBVEiJvZa9quJAGIbfMfEYTUSUQAqLYOnehJobsBTlHLbRQtKKlY3lObegxRa7pRdg7y0saiuoKAErMZif2Squ2eTEOCfsC1Pk+3uYb2YyQwCg1+u9UUqHAKoAOCQrB8ASwPt0Ov1JdF3/bprmj4QhoXp5eXnjTdMcUEr/Bw+WZQ15Smn1q4UIIZBlGaIoghBys2+3W1yv19u367rfeAAc6ww5jkOz2USj0YAoigH/aDTCbrfzpfCUUrAC2+02NE2LjPm3NjNQkiTU6/WHsFAgi1RVRSqVCthd171BwmozA/P5fMA2n88xm81g2zYAwHGccCAL9H43elosFrhcLpE5zMCwHMdxImtRSp8DptNpZDIZAIAgCAG/IAi+42Ga5q29nkin06FxgZqmodvtxooFgPF4jPV67bM9NcNnW384HJI7h49kWRZOp9PXgOfzGfv9HgCQy+VQKBR8fsMwYFkWAOB4PMJ13UAN0mq1Yq/hfVytVoOu6z7/YDDAZrP5Wzzk6CR6LOLEJLqGcWrxYX2OW5wJmOQOjQX0ApOERgIrlQoTUJblgK1cLodeWZ4IIeDDngZx5P1T75XNZiFJUmQeTyl1wPAW/awrD7rlpDiOW3qL/cz4DBY1CCG/U4qifDw7O1YpivJBAGAymbwahjG0bbtKKeXjJJdKJaiq6rOtVqvAjU8IsTmOWxaLxfd+v//rD1H2cZ8dKhk8AAAAAElFTkSuQmCC', 'github': 'iVBORw0KGgoAAAANSUhEUgAAAB0AAAAdCAYAAABWk2cPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMOwAADDsBdtCd4gAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAW2SURBVEiJrVZdaBNZGD33TpL+RosxxWZSu7ZpDYQ1CPVBUSws2Cq6sPWvFW1BQcyKaOnDwvqgQvFh6ypoFn3xUd1OygrarK6UKoq7FAqFVWulKba1rtVgW5PWZjqZ++2DTjY/av3ZA8Mw3537ne+c+829w/ARIKKFQ0NDG/v7+zeEQqGysbGxopmZGVteXt5Lh8PxrLy8fNDtdgdlWe5gjL2cKx/70GAkEqkIBoMtiqLU9vX1SVNTUxBCQJIko5g3SRiD1WqF1+vV6+rqfqupqTmcnZ098EmkRGS5cuXKTydOnPh+cHDQzDlPHgPnPEGYSMQYhBBgjMHtdmuHDx/+paqq6gfG2OycpJFIxHbkyJH2QCBQ9SEX5gLnHHv27Pmzubm5Nj8//3nymCn5YWxsrLCxsfGv7u7uUkmSMtR8CoQQOHfu3KqRkZG70Wh0pdVqDWeQEpF569atSnd3d6lhn67rifX7GBhFCiHAOYfJZMK1a9fKOOeXiegbxpgKAImMmqad7Ojo2A68WZ/169fj4MGDyM3NxdDQEDRNA2MMRAQhRILEWEcAsFqt2LZtG/bt24eJiQmMjo6CMYZHjx4tNplMedevX/8DeLumd+7cqdixY8d9IjIzxqBpGi5cuIC1a9cCAEZGRuD3+6GqKjweDwoLC2E2m6GqKl68eIF79+7Bbrdj//79sNvtYIxBURQ0NzeDMQbGGLKysrT29nbP8uXLB0wA0Nra2kJEZqN6zjkWLFgAo2uXLFmC1tbWhCLjnm6t0cEAYLfbEzEAiMVi5jNnzrQA2M47Ozttvb293xmTjZfGx8cTVQJvujH5OR3J73HOMT4+nhJnjOHmzZube3p6FvJgMPitECK5oZCVlYX8/Pz3d8wcEEIgNzcXFoslpShVVaXOzs4NksVi+XFyctKTTFpfX4+Ghob3qpoLRASXy4W+vj6EQqEUtZqmxfmTJ09cyRMkSUJ9ff1nkRkwLN65c2fiMzLug4ODX3MhRFHyJjBv3jyUlJR80cYAvFFVWlqKnJyclHgsFnOYdF1fkGyjyWSCJEmfbS3wnyqLxZJoQANCiDwOIOUoisVieP369f+iNBKJQNO09FzTnHP+LDkyNTWF4eHhLyYUQiAUCkHTtJQxk8n0D8/Ozh5MnxQMBqHr+hcTX716NcVaxhjmz5//N3e5XL+nW6koCoaHhz/bYiJCb28vbty4kRIXQmDp0qUdfPXq1VeJKG5s5gAwPT2NvXv34vHjxymJPhYPHz6Ez+eDqqrpxejV1dW/MwAoKytTVFXd6vV6sWbNGly+fBmjo6Ow2WzYtWsXamtrUVxcnOjE9D8JXdcTa9je3o6LFy9ienoayUIAoKCgQLl///52AIDP5yuVZVldtmwZBYNBGhgYoI0bN5IsyyTLMpWUlNCqVauoq6uL4vE4paOtrY0qKytp8eLF5HQ6SZZlcjqdKZfD4Zg9evSoC0j6XfF4PKdevXp1yGKx4NKlS4jH4/D5fAiHw+Cco7CwELdu3YLVak1pDiJCOBxGVVUVotFoip3JShctWnSyp6enGUg6xFtaWrpu3769Rtf1r54+fYrdu3dj5cqVKCoqgsfjQWNjI9xud8ZJwxiD2WxGMBhEOBzGuyBJ0t1jx441BAKBzE/i+PHjdofDEXI6nXTq1CmKRqM0MzNDExMTFIlESNd10nU9w97Z2VmqqanJsPSt1aHTp0/bUxx4B7Ht7Nmz7URUVV5ejhUrViAnJwcFBQU4cOBAxrYGAJqmYdOmTXjw4EGKA5zzu01NTZsPHTr0PJ0nA4qiWLxe70mHwzEryzI5HA6qq6sjTdMyVBpKq6urqbi42FA3W1lZ+bOiKJY5ydLR1NTkqqioaCsqKopv2bLlg6Tr1q0jWZY1j8fzq9GlXwS/328LBAIN8Xi8Tdf1fiKafMs3KYTo13W97fz58w1+v9/2Mfn+BQw/D7WnyIOMAAAAAElFTkSuQmCC', 'instagram': 'iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAYAAAByDd+UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMOQAADDkBCS5eawAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAYPSURBVEiJlZZNaBRbFsd/VXXrI23sDtrRCQkkGkleFHlKiEj8wIgTF0Igs4nzcDFjCOqmdwrPjczmCW4MuDEoM7pQlw6unPEZhRCVKL6gsUmItKhh8tV+JN2d/qiuurNwbk118h7MHLjU17nnf//3/s85pfEfu3z5clsymfxRSvl7TdM2Syk1KSVhU8/q6vt+cJVSIqUM7n3fl8CclPLn3bt3/3T+/PlJAA3g3Llzf5ibm7sFOJqmVQQOP68G/a0RNk3TAApNTU1/vHTp0t+1oaGh7x49evQL4CiAMFgY5NdYhv1+BSj8nO/p6fle6+vr+1upVPrTaucNGzZw5MgR2traiMfj2LaNYRjoul4RyPd9PM+jUCiQTqdJJpMMDw+zvLy8BjgSifxV6+3tnZFS1ofBuru7GRgYwDCMNSv/X6xUKnH16lVGR0crQKWUMwL4XXjVnZ2dnD59GiklDx48YHR0lPn5eQqFAp7nBaJQpus6hmEQiUSoq6vjwIEDHDp0iEQiQTab5dWrV+GdqzO2b9/+F03T0DQNIQQXLlzAcRwGBwe5d+8e6XSaQqFAuVxeA+j7Pr7v47ou+XwegJGRET5//kx7ezutra3cv38/DPiNmjr4HTt2EIvFSCaTPH36NHD8DeWhaRq6rqPrOj09PVy5coWzZ8/y8OFD3r9/z6ZNm2hqaqoQnwgf6rZt2wAYHx+vOGx1H4vFOHjwIFu2bMH3fVKpFCMjI+RyOTZu3AgQXMfHx2lsbKS5uZl3794FcYS60TSNWCwGwKdPn9YIoauri5MnT2KaZvBu//799PX1MTQ0xJ07d0ilUrx58wZd1/ny5QsA0Wi0Io5QYAC2bQPfVBZmt3fvXk6dOgXA48ePefHiRfB+3759JBIJLl68yMjISBCrWCxWxAy2NIyu0sDzvGCiEIL+/n4ABgcHefbsWeD//PlzkskkAwMDDAwMkEgkAj14ngdQkbeapqErhuGkNgwDy7KwbZtdu3axfv16JiYmGBsbW1NBhoeHSaVSxONxmpubAyaqzoYBpZTopmli2zaO4wQMLcuiqqoKx3FobGwEYGpqCsdxsG0b0zSDQFJKJiYmAGhoaGC1KSUHO+Y4DkIIdF1HCBEAOo5TMXHdunXYto2UEs/zgrwsl8uBr+u6awBVSqkmoKtVO44TrNo0zYDN7OwsAO3t7UQiEWzbDvwtyyISibBnzx4Apqen1wCGTdd1dDU5DBgOuri4yOzsLLW1tRw/fpyqqips28ayLKqrqzlz5gw1NTUkk0kWFhYqGIUZKhOqC4QLtWKn+tvdu3fp7++no6OD1tZWpqamAGhra6O6uppsNsuNGzcwTRPXdZFSBvlaLpcrWpiwbTsowErKkUgEy7KCFWYyGW7evMmxY8eor6+no6MjWNzbt2+5desW2Ww2mOO6LlVVVQAUCoVKhqZpBqLJ5XIAxOPxCkAFevv2bWpqaqitrcXzPD5+/MjCwgKu62KaZkXXr6urA/5btRRLYVlWsKXz8/MAtLa28vLlyyCXVBDP88hkMnz9+pVyuUy5XA62LgxmGEYgpMnJyUqGlmUhhMAwDHK5HOl0mng8TldXF2NjYxU/RyoNXNelVCpVCEMNXdc5ceIE0WiU169fk06n14jGM03TMAwDIQRjY2McPXqUlpYWGhoamJmZIZfL4bourusGoGookQghqKmpYefOncRiMTKZDNeuXVv9b+QJx3HmTNOstywL0zTxfZ8nT54EJa2lpYX/11KpFNevX2dpaWl1m/uXiMVi/wT+rEqWEALf9xkfHycajRKNRlFKBsL/nQHLUqlEPp9ncXGRyclJPnz4QLFYDOqz0sLmzZv/oaVSqdbp6elfTNOsMk0TtbXhtqWAFIg6w2KxSKFQYGVlhVwuRzabJZPJkM/ng2+FQgHXddE0bSWRSHwvtm7dOpVMJn9YWlq6I4RwVIqEC+5qQCUy5RNWsTpr13XDcfLd3d0/dHZ2vg0iptPp7+bm5n7UNO2IEKJO+2Zr0iKs1GKxSLFYJJfLsbKyQiaTYXl5WQ25srIya9v2z729vT8dPnx4CuDfBIhl1RKmcgQAAAAASUVORK5CYII=', 'lattes': 'iVBORw0KGgoAAAANSUhEUgAAABgAAAAdCAYAAACwuqxLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOEwAADhMBVGlxVAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAd/SURBVEiJlVZ7TFTZHf7ua+bOzJ0XwyLDIDLy1oFVg7E2RmPMUmxNscaiQqON0mA0YYORtG7ShFTjxk37h8bQpVmN2d2EdnzABjF2C/VRX2BFVBAyQJPOiEuBGWa4zMy9d+7c0z/Wob5i7C+5ycm5Od/3+53z/b5zKLwUhBD9/fv3a7q7u7cODg7+QBRFi6qq3MzMzCxN036DwfA4Kyure+XKlX9ramqawnsElRoEg8Hlx44du9DX11fMcRxSH0VRCAaDAACO46BpGliWJYSQRzzPX6yoqPjq8OHD/34nQSgUymlqavrn+Pj4B7IsI5FIgBACvV4Po9EISZKgadrDrKysL/Lz8+/yPD/c3NwsvU8FLAC0tLR8pqrqBy6XC4qiQFEUSJKE2dlZxGIx4vF4PmltbT1BURR5H9BXKhgYGFh+/Pjxx3q9nibk+/UMw4AQgtnZWQiC8FlbW9uv/1/ghQouXrxYJYoiPTMzAwDQ6/Uwm80wGo3gOE7au3fv8ba2NkxOTmacO3fuN0NDQyv1er1aUlLyoKqq6ov8/Pyxd1awefPmv87Pz1cAgKZpSCQSMBgMcDgckGX5H11dXevD4bC9vr5+wO/358iyDJ1Oh2QyCUKIUlNT88mhQ4f+AACnT5925Ofn6yorK79LEdCqqi4zmUwwmUwwGAzQ6XRQVRWapgHAJABcuXLlF3Nzczkcx4EQAo7jYLFYYLVadZ2dnb8/ceLEAQDIyMgIt7S0eG/dumVeIDCZTBae56HT6cAwDFiWhcViSW2TDgDC4bDdYDCAoijQNA2DwQCbzYa0tDRYrVbcvHnz02vXrgnV1dVJQRDYo0ePnieE0ABAC4IgpDLneR4OhwPp6ekQBAFGozEDAMrKyv7udruRTCbBcRyMRiOMRiP0ej1YlgUhxHLnzp01AFBaWjo+Nzf3o507d/4KAGiLxRLPyclBdnY2cnJy4HK5kJaWBo7jwLJsmdfrZdatW3crHo//ZdOmTeB5HizLQhRFiKIIRVGQTCYhSVIMABwOxzwhBD6f79OrV6+m0UajUfR4PCgpKUFeXh6cTidsNht0Oh1kWTY9efJkFQA0NTX9MhaLtW3duhWPHj3CkydPEA6HEYvFEIvFehmG6QWAYDCYlUwmQdO0vb29fSdLCPlPUVFRZiQSQTAYRCgUWuiBeDyO4eHhnwG473a7JQA1Z86cObdjx469/f39uaFQiFZVtWf37t1H6+vrtXA4bK+trd2oKApYlsXjx49/zjIMM2i1Wj+UZRksywIAUnZht9sRCAR2er3e31ZXVycBYN++fd8C+PZlrd++fRuEEObkyZNfhkIhgRACTdOgqmo+7Xa7ByVJAk3TMJvNcDgcsFqtyMzMhF6vx+TkpLunp2fLu5qJEKI/e/bs152dnVt0Ot2CKaqqmsauX7/+dF9f33WGYYqj0WhRPB4vtNlsRU6nM9/hcOhlWcbo6GgjgG/eBj40NLSioaGh5cKFC2uLi4vBsiw4jkMikQCAZ9S9e/cKent7Py4sLLztcrkelpaW/ouiKMXr9TIAciRJKpyamiosKCg4V1VVJb44SMv169c3dXR07B0bG/sxx3F0X18fsrOz4Xa7EY1GEYvFwHHcRYoQQh08eHDo1KlTJRMTE+jv709OT0/7o9HoaDQa9SeTyaimaTJFUbaRkZG0sbGxoufPn5eIosgSQrB69WooioLe3l7YbDasWLECkiQhHo+jvLz8pyxFUaS1tfXzBw8enCwvLwdN04zf73cPDQ25fT4fpqamMD8/j2XLliEQCGBiYgKyLAMA3G43BEHA8PAwAEBVVSSTyZTNjDqdzi4aACoqKr7s6OiI0jQNnudht9vhcDhgMBjA8zwAQBAErFq1CsXFxXC5XPB4PMjNzUU4HEYgEABFUWAYBvF4HIqiIC8v73fNzc0a/SKTMCGkbXJyEmazGenp6XA6ndDr9UipIhKJgOd55ObmYsmSJSmFYWBgIJUxDAYDJEkCwzBdXq/3awCgU2qoqqr6Y3t7+8I1mZGRkbILMAyDZ8+eIRqNQhRFxGIxzM7OwufzIZFILJigy+WCyWSaPXDgQP2Cm6YGa9eu7X/48GGvLMsL5brdbrhcLmRnZ8NgMCAajSISiSAQCMDv9yOZTC7IdfHixRAEQdy+fftP9uzZM/EGAQBs2LDhdE9PD1RVhaqqC8ZnMpmgaRp8Ph/Gx8chiiIoigJFff8osdlsWLp06diuXbt+2NjYePdlzFcIamtrvZcvX56UJAmyLIOmaTx9+hSjo6OYmJhANBp9o9GcTmdizZo1p44cObKyrq5u8PX/rxBQFKUsWrToTyMjIwiFQohEIjCbzdA0DakHAQDQNA273U48Hs/VhoaGDzs7Oz/euHHj/BvsrxMAwJYtWz7v7u5WUsaXmZm5oO0XV6VcUFDw1f79+8vu3r27ubGxcfhtwKlgX58oLy//rq6u7oKiKDXT09MIBoOgKErhOO7G8uXLv6msrPzztm3bgjdu3HgX7v925W2Tly5dWnv+/Pm29PT0m7m5uV1lZWVXP/roo8h7Ib4W/wW5PFM4xqdwfQAAAABJRU5ErkJggg==', 'linkedin': 'iVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAYAAACpSkzOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAM6QAADOkBmiiHWwAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAJRSURBVEiJ7ZU/aCJREMa/t7soa5LOoGihktZOQSxSWykBIYVaWZ6NVa6wSZ/WI5BGziJypA1CQBLsgkKKgBjFQkEtkouJ+AdxdeeKnHvurXdcXK84uK/amfl4v9m3s++xbrdrury8PGm324dEZMYGxRj7arPZvoRCoSPh/Pz8pFqtftgkYEnmTqeT6PV6xDscjs9EZPpLIADAy8uLS5jP52bGGACA4ziEw2H4/X5IkoSrqytcX1/rBhHRrrCcCAaDCAQCShyJRPD6+oq7uzvdMG458Hg8GoPX69UN0YDG47HGsCqnG5TP50FESjyZTFAoFDYCYvF4nBbDAAB7e3vw+XyQJAnFYhGPj4+6IUQE4eekJEm4vb0F8DaFC1mtVphMb3+BLMtotVogItjtdjgcDhiNRvT7fTw8PKzcbhXI5XIhlUqpOkkkEpjP5zg+PoYg/LCfnp5if38fbrdbteB0OsXFxQVubm5+DTIYDKoiYww8z4OIwPO8qhaLxbCzs6Pp3GAwIBqN4vn5Gff390qe0zj/UKsgywqFQqpY843eo1KphHK5DLPZjIODAxiNRqXmdDqxvb2N4XCoD1Sv13F2dqbEs9kM0WhU5bFYLApo7a1bTOZClUpF49na2lKe1wb1ej1VvGqklwdobdB79R/0j4FkWdYYiEh1dawrAcATgF0AaDabyOVyyuE5HA4xmUwAAJlMRjl2ZFlGo9FQLTQajZDNZiGKouKp1WqL8hNLJpPpwWCQ0N3ybySKYpqLxWJHjLFP399s03riOC4dCAQ+fgMeouMzfwx22gAAAABJRU5ErkJggg==', 'RG': 'iVBORw0KGgoAAAANSUhEUgAAAB4AAAAcCAYAAAB2+A+pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMfwAADH8BdgxfmQAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAM2SURBVEiJtZdLSytJFMd/1dXB+OiQRJEQBEnbPgISJGIQcePKjyBZzoP5AH6OuR9gFjPMznwC1650EbKSy00WPhJ8EMlDtG1M0p2axZCA1871cZM/NDRFnfqdqjrnVJUAODg4+E0IsQ8sA5LRyANKQogve3t7/4hcLvcH8NeIYL5SSv2uAftDHhSl1A/7CCH2dWBxWNBoNIppmgSDQarVKufn53ie59d1RQO0YUBjsRg7OztomkatVmNpaYnNzU2EEH7dNX0YUKUUpmlyd3dHPp9HKcXV1RXT09MIIXyXfihgKSWGYVCpVPoQ27axbXugjS/4HcHh29btdlFKsbq6SiwWA6BQKHB/f/82WEpJKpUiEAi8aA8EAiilaLVaNBoNrq+vabfbr+BCCG5vb3l8fCSTyaDr/ov6KrA8z6NcLtNqtUgkEszPz+M4Ds1mE9u2MQyDjY0Ndnd3mZmZ6ds4jkMoFAKg0Wjw8PCAEIJOp+ML9nWnZ5hIJJBSUiqV+gMIIbAsi3Q6zdbWFoeHh7iuS7lcZn19HcdxsG0by7Ko1+sD93lgcCml6Ha7SClftZ+dnbG4uIhhGMzOznJzc0OlUkHTNBYWFtB1nXq9zunp6aA8/lxUe57H09MThmEwPj7ed+ji4oLLy0uEEHieNyiHPw+WUjI5OYlS6lXE9krmj6DwyaplmiaGYVCtVqnX658Z4u0ZCyGIx+O0223GxsaYm5sjHo9Tq9U4OTn5FPRdYCkly8vLCCEIh8MopSgUCpTLZVzXHR3YdV2Ojo7wPI/t7W1isRjBYPCnoPDOPVZK4XlePz2SySThcHj04J4ajQbFYhEpJZlM5lWOjwwMUCwWaTabRCIR0un08MG9gt/778l1XfL5PJ1OB9M0WVlZGR54amoKy7IIBoPouo5lWYRCof7SNptN8vk83W6XVCrF2toaExMTHwKLXC734vCVUpJOp9F1/cW5rGkapVLpRcGIRqMkk0kikQiO43B8fMzz8/O7wd73Mx90EfArg0opNE178/LwnboaUPID+H2DnPkgFOCbppT68lGrn5VS6k8tm83+DfwKfOX/Z8ao5AFflVK/ZLPZf/8DudZq3wvXLmgAAAAASUVORK5CYII=', 'tweeter': 'iVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAYAAACpSkzOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMMQAADDEBLaRWDgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAK5SURBVEiJpZU7T+NAFEZP4kAePBwZ8TA0EUIRKKIgQhSImnZ/wDYr7Q/barddbRu2QVAQhChAgBQqQClwFEIcx8IYfLdKNk5sJ4GRRh6PPN+Z+90749jZ2VnGsqyfwD6QEREARISocdRcT7dF5AD4lmi327+AL0GCn4QgIhkR+SIiPxIish8k3i/yQVCn7ydEJD0sgjDBMUCZxCg2hQmqqsri4iKKotBoNKhWq741vesSvULpdJrJyUkajcZQy7a2tlheXqa3FQoFzs/PmZubQ9M0Dg8Pu2vivQJLS0sUi0Wy2WykFfl8fgACkEql2N3dJZfLcXFxgaqq/0G9O04mk8RiMba3t8nlcqHRrK6uDkB628TEBDs7O5imORgRgGVZ3Y/z+Tx7e3ssLCz4QMlkkng8HglqNpscHBzw9vbmz1EHVK1WWVtb6wpNTU1RLBZ5f3/HMAzq9TqO40RCAGq1Gq7r+jboK4aZmRmurq7Y3Nz0LVQUBV3X0XV9KATAcZwBy7vlLSJomjbU/1Ha8/PzAMhXdQ8PD5+GABiGEQ1qt9tcXl5+CvL09MTLy8ugdf0T9/f32LbNxsYGs7OzY4Our68DD/oASEQoFApMT0+PDTFNk7u7u0BQPAhULpdxXXds0PHxMZ7nDUBCQa1Wi1KpRKVSwTTNkSAnJyfU6/XQWz4QJCI4jsPj4yOKogyFnJ6ecnt7G3nTd3OUSCSYn59HURRUVUXXdTKZTCTAtm2Ojo585dwP6rx3Qa+vrzSbTdbX11lZWSEWi4UCLMvi5uaGSqWC53mh/67esa/qTNOkXC4DoGka2WyWVCoFgOu6tFotDMPAtu3QXISNA8tbRKjVaoEnPCwPYZZ1nnHP8+ww2Ed7P0RE7LjneX/7ff6ocES0pbiIfBWRP57n2aMAwywKGdsi8ltRlO//AFPkniYXwGRMAAAAAElFTkSuQmCC', 'udemy': 'iVBORw0KGgoAAAANSUhEUgAAAB4AAAAdCAYAAAC9pNwMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMOgAADDoBpJd/BgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAYHSURBVEiJlZdbTFNbGsd/e/cCFtpgxX0sjHgJoepBJcqMl4gGjoYTb5PRYZxEMmq8cI5Oosw8ODG+iJpMHGN0Hsz4QHwwmRgLHpJjqkDqQZ+QWEWisdEIRZoKtAKFFuxt73nQ3aG05pT/2/rW5fd93/rW2msL/Lo0gO727dtlc+fO/cFoNK41mUzzjEajMR6Py6Ojo4FgMPjR4/E8fv369fULFy70A1EgnsHaaSVarVbj3bt3L/b3948pGSgWiylPnz71nj9//kcgBxBnC9Vfv379QG9vb0bAmZJlWXn06NFATU1NFaDPFDrn5s2b/56ampIVRVGCwaDS2NioNDQ0KG1tbbNy4MOHD7H6+vp/AHNmQjQzoXfu3Gnav39/rVarFQCam5vp6ekhHA7jdrtZs2YNBoMhowhyc3PFLVu2fOf3++c6nc5fgFg6sP7atWv/OnjwYK0gCAD4/X5aWlqQZRkARVEoLS3FbDZnmj20Wq2wcePG375582bM5XI5+VJ06uaLdXV1fzh27NhfRfH/9dDe3k40Gk20BUFAp9N9FdLd3c2VK1e4desWk5OTCbvZbBYaGhr+aTQaf6cyVYqhpqbmWnZ2tqAO7u3t5fnz5zO9Z968eWmhIyMj2Gw2vF4vL168wOFwJPWvXLlSe/z48f8ABhWsPXXq1Mmqqqpv1EHhcBibzZZIsSpJksjNzU0LfvjwIeFwONF2uVwoipI05uTJkyskSfo9oBUB/fr16+vUfVUUhaamJnw+X8riJSUlaaHDw8M4nc4kWzAYTNomAIvFIuzYsePvgF7MysqyVFRUFKqdbW1tdHd3pwVYrda09pm1ACDLckrGAKqqqr4FFmh37979l4KCAlFRFFpbW3E4HCkpAtDr9SxatCjF7vF46OnpSbGnWwOgsrJSB3ynlSTp28nJycR5/dqEoqKitBXd2tpKPJ56LSuKkjZii8UiZGVlWUWz2fwbv9+fBJ1+pFQtXbo0xfbu3TtcLhcA8+fPT5ony3LaIERRZMmSJUtEILeoqIjt27djtVrZtm0bmzdvTpmwePHilIju3buHoigIgsCmTZuS+mOxGJFIJGUOQFZWlln0+/1+gMrKSo4ePUp1dXVKRQuCQEFBQZKts7OTgYEBABYuXMiKFStQT4YKmX6JuN1uLl26xPj4OH19fV7t8PDwwMzoPB5PUttoNJKTk5Noj42Ncf/+/YRTW7duJScnB51Ol7Tfb9++JT8/n66uLux2O9FolIGBAWV8fNyjffz4cWcoFKpVFw6FQoRCoSSwwWBg+jlvbm5ORFNcXMzy5csRBAFJknj//n1int1ux+FwMDU1BYDJZKKvr08B3oo+n8/e3t6eOISRSCSlGqcXSUdHR6KgNBoNO3fuTDhVXl6eNE+W5QRUEASqq6ux2+2fAIcIDLW3t7vUwRqNJmmvAD5+/Mjg4CBOp5MHDx4kHKmoqKCwMHH3sG7dOpYtW8ZMZWdns2fPHsrKyrDb7Z3AkABo9Xr93q6urv+uXr1alGWZc+fOpaR7eqrhc0GdOHECrVabkp1Xr17hdruRZZkFCxZQWlqKwWDg6tWr0fr6+v3ATxpAjsfj/YFA4Pu9e/cWCILA0NAQXq83xXNVeXl5HDlyJKngpjsoSRIlJSVYrVYKCwvR6XSMjo5SW1vbMTExcQH4pD4EYi9fvnxZWFj457Vr1+osFgvPnj1LuX/h8xfq8OHD5Ofnf9WxmZJlmQMHDow9efLkCOAGFBWs8Hmv+8vLy3etWrVKLC4uxuv1MjExgSAImEwmNmzYwL59+8jLy8sYCnD27NlPN27cqAMcTHv+TNcci8VypqWlJaK+FgOBgDIyMqJEo9FZvzZjsZhy5syZSeBvpHnwpcA1Gs2fLl68OBaJRGYNU+Xz+eRdu3YNA3/MBKpKD5SVlpb+3NjYGI7FYhkDg8Ggcvny5U+SJDUDZcziXa1K5PPfQGVZWdnPp0+fnujo6IgHAoEU2ODgoGyz2WKHDh0as1gsTcAWfuVPQvhaxzRpAB1gBNZ9iUISRfGbLzfcIDAMvACeABNk8O/0PwJCxMb99V7LAAAAAElFTkSuQmCC', 'youtube': 'iVBORw0KGgoAAAANSUhEUgAAACEAAAAaCAYAAAA5WTUBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAMNwAADDcBracSlQAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAKkSURBVEiJxZcxSBthFIC/918uGhxMsyptcGjoIgGHW9wSihQKGZrNthHsIC7S1TqWgkRwcZV2lKo0FouixaEuEQ4khIIdrClkEoIZgiae93fQgFgll5jqt93x3v++e3f/3TvhGgYHBx/UarUUEAMeA48A/3WxDagBf4A9EdmsVqsfd3d3j64GyeWDZDJpFAqFKWAC6G6haCPKIjKTzWbfA+4/Ev39/V2dnZ3LwNP/UPwqaycnJy9yuVwFQF2cVIFA4PMdCQAMBQKBL8lk0gAwACzLmtJav7kjgTp95XK5ViwWf0g0Gg36/f7fQLBRltYaEWkU5hkRKTmO06dM03ztRaAuEQ6H0Vq3RUJrHTIM46XR29v7jvNt2BClFEtLS0QiEfb39ymVSrfujIg4Cog0mxiPx1lYWGBycpKenh5c122cdANa64gCHra6QCKRYHl5mfHxcYLBII7jtLJMWAEdrUrUSaVSrK6uMjo6SigU4uzsrJn0DtU4xhs+n4+xsTFWVlYYHh6mq6vL821qm0Qd0zSZmJggk8kQi8XuR6LO1tYW+XzeUzd87S6ey+WYnZ0ln88jIijV+DrbJnF4eMj09DTb29u4rtvU+8MHVLnFDjk+PiadTrO+vs7p6WkrS1R9QAGPb8zLaK2Zm5tjcXGRSqXiqe03sO8D9pqVyGQyzM/PUywWMQzjNgIAv3xa600Ree4l2nEcRkZGODg4QCmFYRi3KQ6AiGzIwMBAt2EYB9znp9y27bLWesZjUtsELkjbtl2ur6osy/qqtX7W7io3ISIb2Wx2CHDrT5TrOE4SWLsjgW+O4yS4mLiv9ldZljWptX6Lx2mrSY6A9M7OzgeuG/kvE41Gg6ZpvhKROPCE85mj5Z8fEfnpuu5313U/2bZdvhr0F9Fo9phaoDu9AAAAAElFTkSuQmCC'}
footer = '''<div align="right">
<p align="right"><b>'''+self.tr('Author: Leandro Franca', 'Autor: Leandro França')+'''</b></p>
<div align="right">
<a target="_blank" rel="noopener noreferrer" href="https://www.udemy.com/user/leandro-luiz-silva-de-franca/"><img title="Udemy" src="data:image/png;base64,'''+dic_BW['udemy']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://www.facebook.com/GEOCAPT/"><img title="Facebook" src="data:image/png;base64,'''+dic_BW['face']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://www.youtube.com/channel/UCLrewDGciytcBG9r0OxTW2w"><img title="Youtube" src="data:image/png;base64,'''+dic_BW['youtube']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://www.researchgate.net/profile/Leandro_Franca2"><img title="ResearchGate" src="data:image/png;base64,'''+dic_BW['RG']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://github.com/LEOXINGU"><img title="GitHub" src="data:image/png;base64,'''+dic_BW['github']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="https://www.linkedin.com/in/leandro-fran%C3%A7a-93093714b/"><img title="Linkedin" src="data:image/png;base64,'''+dic_BW['linkedin']+'''"></a> <a target="_blank" rel="noopener noreferrer" href="http://lattes.cnpq.br/8559852745183879"><img title="Lattes" src="data:image/png;base64,'''+dic_BW['lattes']+'''"></a>
</div>
</div>'''
return self.tr(txt_en, txt_pt) + footer
def tags(self):
return self.tr('8bits,8 bits,rescale,radiometric,reduce,reduction,bits,linear,stretch').split(',')
RasterIN ='RasterIN'
TYPE = 'TYPE'
BYBAND = 'BYBAND'
NULLPIXEL = 'NULLPIXEL'
RasterOUT = 'RasterOUT'
OPEN = 'OPEN'
def initAlgorithm(self, config=None):
# INPUT
self.addParameter(
QgsProcessingParameterRasterLayer(
self.RasterIN,
self.tr('Raster Imagery', 'Imagem Raster'),
[QgsProcessing.TypeRaster]
)
)
opcoes = [self.tr('Min / Max'),
self.tr('Quantile (2% - 98%)', 'Quantil (2% - 98%)'),
self.tr('Mean ± 2*stdDev', 'Média ± 2*desvPad')]
self.addParameter(
QgsProcessingParameterEnum(
self.TYPE,
self.tr('Rescale type', 'Tipo de Reescalonamento'),
options = opcoes,
defaultValue= 1
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.BYBAND,
self.tr('Rescales by band', 'Reescalonar por banda'),
defaultValue= True
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.NULLPIXEL,
self.tr('Define null pixel as zero', 'Definir pixel nulo como zero'),
defaultValue= False
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.OPEN,
self.tr('Load output raster', 'Carregar imagem de Saída'),
defaultValue= True
)
)
# OUTPUT
self.addParameter(
QgsProcessingParameterFileDestination(
self.RasterOUT,
self.tr('8 bit rescaled raster', 'Raster reescalonado para 8 bits'),
fileFilter = '.tif'
)
)
def processAlgorithm(self, parameters, context, feedback):
RasterIN = self.parameterAsRasterLayer(
parameters,
self.RasterIN,
context
)
if RasterIN is None:
raise QgsProcessingException(self.invalidSourceError(parameters, self.RasterIN))
RasterIN = RasterIN.dataProvider().dataSourceUri()
Output = self.parameterAsFileOutput(
parameters,
self.RasterOUT,
context
)
Carregar = self.parameterAsBool(
parameters,
self.OPEN,
context
)
tipo = self.parameterAsEnum(
parameters,
self.TYPE,
context
)
porBanda = self.parameterAsBool(
parameters,
self.BYBAND,
context
)
nullPixel = self.parameterAsBool(
parameters,
self.NULLPIXEL,
context
)
min8 = 1 if nullPixel else 0
eps = np.finfo(float).eps
image = gdal.Open(RasterIN)
prj=image.GetProjection()
geotransform = image.GetGeoTransform()
GDT = image.GetRasterBand(1).DataType
n_bands = image.RasterCount
cols = image.RasterXSize
rows = image.RasterYSize
CRS=osr.SpatialReference(wkt=prj)
# Criate driver
Driver = gdal.GetDriverByName('GTiff').Create(Output, cols, rows, n_bands, gdal.GDT_Byte)
Driver.SetGeoTransform(geotransform)
Driver.SetProjection(CRS.ExportToWkt())
bands = []
max,min = [],[]
for k in range(n_bands):
band = image.GetRasterBand(k+1).ReadAsArray()
bands += [band]
# Rescale
# Max e Min
if tipo == 0:
max += [band.max()]
min += [band.min()]
# Quantile (2% - 98%)
if tipo == 1:
max += [np.quantile(band,0.98)]
min += [np.quantile(band,0.02)]
# Media ± 2*DesvPad
if tipo == 2:
max += [band.mean() + 2*band.std()]
min += [band.mean() - 2*band.std()]
if not porBanda:
Max = np.max(max)
Min = np.min(min)
# Rescale and save bands
for k in range(n_bands):
band = bands[k]
if porBanda:
Max = max[k]
Min = min[k]
transf = ((256-eps-min8)*(band.astype('float')-Min)/(Max-Min)+min8-0.5+eps).round()
if tipo in [1,2]:
transf = ((transf>0)*(transf<=255))*transf + 255*(transf>255) +1*(transf<1)
transf = transf.astype('uint8')
outband = Driver.GetRasterBand(k+1)
feedback.pushInfo(self.tr('Writing Band {}...'.format(k+1), 'Escrevendo Banda {}...'.format(k+1)))
outband.WriteArray(transf)
if nullPixel:
outband.SetNoDataValue(0)
image=None # Close dataset
Driver.FlushCache() # write to disk
Driver = None # save, close
feedback.pushInfo(self.tr('Operation completed successfully!', 'Operação finalizada com sucesso!'))
feedback.pushInfo('Leandro França - Eng Cart')
self.CAMINHO = Output
self.CARREGAR = Carregar
return {self.RasterOUT: Output}
def postProcessAlgorithm(self, context, feedback):
if self.CARREGAR:
rlayer = QgsRasterLayer(self.CAMINHO, self.tr('Rescaled to 8 bit', 'Reescalonado para 8 bits'))
QgsProject.instance().addMapLayer(rlayer)
return {}