forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabstractarraymath.jl
628 lines (516 loc) · 15 KB
/
abstractarraymath.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
# This file is a part of Julia. License is MIT: https://julialang.org/license
## Basic functions ##
isreal(x::AbstractArray) = all(isreal,x)
iszero(x::AbstractArray) = all(iszero,x)
isreal(x::AbstractArray{<:Real}) = true
## Constructors ##
"""
vec(a::AbstractArray) -> AbstractVector
Reshape the array `a` as a one-dimensional column vector. Return `a` if it is
already an `AbstractVector`. The resulting array
shares the same underlying data as `a`, so it will only be mutable if `a` is
mutable, in which case modifying one will also modify the other.
# Examples
```jldoctest
julia> a = [1 2 3; 4 5 6]
2×3 Matrix{Int64}:
1 2 3
4 5 6
julia> vec(a)
6-element Vector{Int64}:
1
4
2
5
3
6
julia> vec(1:3)
1:3
```
See also [`reshape`](@ref), [`dropdims`](@ref).
"""
vec(a::AbstractArray) = reshape(a,length(a))
vec(a::AbstractVector) = a
_sub(::Tuple{}, ::Tuple{}) = ()
_sub(t::Tuple, ::Tuple{}) = t
_sub(t::Tuple, s::Tuple) = _sub(tail(t), tail(s))
"""
dropdims(A; dims)
Return an array with the same data as `A`, but with the dimensions specified by
`dims` removed. `size(A,d)` must equal 1 for every `d` in `dims`,
and repeated dimensions or numbers outside `1:ndims(A)` are forbidden.
The result shares the same underlying data as `A`, such that the
result is mutable if and only if `A` is mutable, and setting elements of one
alters the values of the other.
See also: [`reshape`](@ref), [`vec`](@ref).
# Examples
```jldoctest
julia> a = reshape(Vector(1:4),(2,2,1,1))
2×2×1×1 Array{Int64, 4}:
[:, :, 1, 1] =
1 3
2 4
julia> b = dropdims(a; dims=3)
2×2×1 Array{Int64, 3}:
[:, :, 1] =
1 3
2 4
julia> b[1,1,1] = 5; a
2×2×1×1 Array{Int64, 4}:
[:, :, 1, 1] =
5 3
2 4
```
"""
dropdims(A; dims) = _dropdims(A, dims)
function _dropdims(A::AbstractArray, dims::Dims)
for i in eachindex(dims)
1 <= dims[i] <= ndims(A) || throw(ArgumentError("dropped dims must be in range 1:ndims(A)"))
length(axes(A, dims[i])) == 1 || throw(ArgumentError("dropped dims must all be size 1"))
for j = 1:i-1
dims[j] == dims[i] && throw(ArgumentError("dropped dims must be unique"))
end
end
ax = _foldoneto((ds, d) -> d in dims ? ds : (ds..., axes(A,d)), (), Val(ndims(A)))
reshape(A, ax::typeof(_sub(axes(A), dims)))
end
_dropdims(A::AbstractArray, dim::Integer) = _dropdims(A, (Int(dim),))
## Unary operators ##
"""
conj!(A)
Transform an array to its complex conjugate in-place.
See also [`conj`](@ref).
# Examples
```jldoctest
julia> A = [1+im 2-im; 2+2im 3+im]
2×2 Matrix{Complex{Int64}}:
1+1im 2-1im
2+2im 3+1im
julia> conj!(A);
julia> A
2×2 Matrix{Complex{Int64}}:
1-1im 2+1im
2-2im 3-1im
```
"""
conj!(A::AbstractArray{<:Number}) = (@inbounds broadcast!(conj, A, A); A)
conj!(x::AbstractArray{<:Real}) = x
"""
conj(A::AbstractArray)
Return an array containing the complex conjugate of each entry in array `A`.
Equivalent to `conj.(A)`, except that when `eltype(A) <: Real`
`A` is returned without copying, and that when `A` has zero dimensions,
a 0-dimensional array is returned (rather than a scalar).
# Examples
```jldoctest
julia> conj([1, 2im, 3 + 4im])
3-element Vector{Complex{Int64}}:
1 + 0im
0 - 2im
3 - 4im
julia> conj(fill(2 - im))
0-dimensional Array{Complex{Int64}, 0}:
2 + 1im
```
"""
conj(A::AbstractArray) = broadcast_preserving_zero_d(conj, A)
conj(A::AbstractArray{<:Real}) = A
"""
real(A::AbstractArray)
Return an array containing the real part of each entry in array `A`.
Equivalent to `real.(A)`, except that when `eltype(A) <: Real`
`A` is returned without copying, and that when `A` has zero dimensions,
a 0-dimensional array is returned (rather than a scalar).
# Examples
```jldoctest
julia> real([1, 2im, 3 + 4im])
3-element Vector{Int64}:
1
0
3
julia> real(fill(2 - im))
0-dimensional Array{Int64, 0}:
2
```
"""
real(A::AbstractArray) = broadcast_preserving_zero_d(real, A)
real(A::AbstractArray{<:Real}) = A
"""
imag(A::AbstractArray)
Return an array containing the imaginary part of each entry in array `A`.
Equivalent to `imag.(A)`, except that when `A` has zero dimensions,
a 0-dimensional array is returned (rather than a scalar).
# Examples
```jldoctest
julia> imag([1, 2im, 3 + 4im])
3-element Vector{Int64}:
0
2
4
julia> imag(fill(2 - im))
0-dimensional Array{Int64, 0}:
-1
```
"""
imag(A::AbstractArray) = broadcast_preserving_zero_d(imag, A)
imag(A::AbstractArray{<:Real}) = zero(A)
"""
reim(A::AbstractArray)
Return a tuple of two arrays containing respectively the real and the imaginary
part of each entry in `A`.
Equivalent to `(real.(A), imag.(A))`, except that when `eltype(A) <: Real`
`A` is returned without copying to represent the real part, and that when `A` has
zero dimensions, a 0-dimensional array is returned (rather than a scalar).
# Examples
```jldoctest
julia> reim([1, 2im, 3 + 4im])
([1, 0, 3], [0, 2, 4])
julia> reim(fill(2 - im))
(fill(2), fill(-1))
```
"""
reim(A::AbstractArray)
-(A::AbstractArray) = broadcast_preserving_zero_d(-, A)
+(x::AbstractArray{<:Number}) = x
*(x::AbstractArray{<:Number,2}) = x
# index A[:,:,...,i,:,:,...] where "i" is in dimension "d"
"""
selectdim(A, d::Integer, i)
Return a view of all the data of `A` where the index for dimension `d` equals `i`.
Equivalent to `view(A,:,:,...,i,:,:,...)` where `i` is in position `d`.
See also: [`eachslice`](@ref).
# Examples
```jldoctest
julia> A = [1 2 3 4; 5 6 7 8]
2×4 Matrix{Int64}:
1 2 3 4
5 6 7 8
julia> selectdim(A, 2, 3)
2-element view(::Matrix{Int64}, :, 3) with eltype Int64:
3
7
julia> selectdim(A, 2, 3:4)
2×2 view(::Matrix{Int64}, :, 3:4) with eltype Int64:
3 4
7 8
```
"""
@inline selectdim(A::AbstractArray, d::Integer, i) = _selectdim(A, d, i, _setindex(i, d, map(Slice, axes(A))...))
@noinline function _selectdim(A, d, i, idxs)
d >= 1 || throw(ArgumentError("dimension must be ≥ 1, got $d"))
nd = ndims(A)
d > nd && (i == 1 || throw(BoundsError(A, (ntuple(Returns(Colon()),d-1)..., i))))
return view(A, idxs...)
end
function circshift(a::AbstractArray, shiftamt::Real)
circshift!(similar(a), a, (Integer(shiftamt),))
end
circshift(a::AbstractArray, shiftamt::DimsInteger) = circshift!(similar(a), a, shiftamt)
"""
circshift(A, shifts)
Circularly shift, i.e. rotate, the data in an array. The second argument is a tuple or
vector giving the amount to shift in each dimension, or an integer to shift only in the
first dimension.
See also: [`circshift!`](@ref), [`circcopy!`](@ref), [`bitrotate`](@ref), [`<<`](@ref).
# Examples
```jldoctest
julia> b = reshape(Vector(1:16), (4,4))
4×4 Matrix{Int64}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> circshift(b, (0,2))
4×4 Matrix{Int64}:
9 13 1 5
10 14 2 6
11 15 3 7
12 16 4 8
julia> circshift(b, (-1,0))
4×4 Matrix{Int64}:
2 6 10 14
3 7 11 15
4 8 12 16
1 5 9 13
julia> a = BitArray([true, true, false, false, true])
5-element BitVector:
1
1
0
0
1
julia> circshift(a, 1)
5-element BitVector:
1
1
1
0
0
julia> circshift(a, -1)
5-element BitVector:
1
0
0
1
1
```
"""
function circshift(a::AbstractArray, shiftamt)
circshift!(similar(a), a, map(Integer, (shiftamt...,)))
end
## Other array functions ##
"""
repeat(A::AbstractArray, counts::Integer...)
Construct an array by repeating array `A` a given number of times in each dimension, specified by `counts`.
See also: [`fill`](@ref), [`Iterators.repeated`](@ref), [`Iterators.cycle`](@ref).
# Examples
```jldoctest
julia> repeat([1, 2, 3], 2)
6-element Vector{Int64}:
1
2
3
1
2
3
julia> repeat([1, 2, 3], 2, 3)
6×3 Matrix{Int64}:
1 1 1
2 2 2
3 3 3
1 1 1
2 2 2
3 3 3
```
"""
function repeat(A::AbstractArray, counts...)
return _RepeatInnerOuter.repeat(A, outer=counts)
end
"""
repeat(A::AbstractArray; inner=ntuple(Returns(1), ndims(A)), outer=ntuple(Returns(1), ndims(A)))
Construct an array by repeating the entries of `A`. The i-th element of `inner` specifies
the number of times that the individual entries of the i-th dimension of `A` should be
repeated. The i-th element of `outer` specifies the number of times that a slice along the
i-th dimension of `A` should be repeated. If `inner` or `outer` are omitted, no repetition
is performed.
# Examples
```jldoctest
julia> repeat(1:2, inner=2)
4-element Vector{Int64}:
1
1
2
2
julia> repeat(1:2, outer=2)
4-element Vector{Int64}:
1
2
1
2
julia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))
4×6 Matrix{Int64}:
1 2 1 2 1 2
1 2 1 2 1 2
3 4 3 4 3 4
3 4 3 4 3 4
```
"""
function repeat(A::AbstractArray; inner = nothing, outer = nothing)
return _RepeatInnerOuter.repeat(A, inner=inner, outer=outer)
end
module _RepeatInnerOuter
function repeat(arr; inner=nothing, outer=nothing)
check(arr, inner, outer)
arr, inner, outer = resolve(arr, inner, outer)
repeat_inner_outer(arr, inner, outer)
end
to_tuple(t::Tuple) = t
to_tuple(x::Integer) = (x,)
to_tuple(itr) = tuple(itr...)
function pad(a, b)
N = max(length(a), length(b))
Base.fill_to_length(a, 1, Val(N)), Base.fill_to_length(b, 1, Val(N))
end
function pad(a, b, c)
N = max(max(length(a), length(b)), length(c))
Base.fill_to_length(a, 1, Val(N)), Base.fill_to_length(b, 1, Val(N)), Base.fill_to_length(c, 1, Val(N))
end
function resolve(arr::AbstractArray{<:Any, N}, inner::NTuple{N, Any}, outer::NTuple{N,Any}) where {N}
arr, inner, outer
end
function resolve(arr, inner, outer)
dims, inner, outer = pad(size(arr), to_tuple(inner), to_tuple(outer))
reshape(arr, dims), inner, outer
end
function resolve(arr, inner::Nothing, outer::Nothing)
return arr, inner, outer
end
function resolve(arr, inner::Nothing, outer)
dims, outer = pad(size(arr), to_tuple(outer))
reshape(arr, dims), inner, outer
end
function resolve(arr, inner, outer::Nothing)
dims, inner = pad(size(arr), to_tuple(inner))
reshape(arr, dims), inner, outer
end
function check(arr, inner, outer)
if inner !== nothing
# TODO: Currently one based indexing is demanded for inner !== nothing,
# but not for outer !== nothing. Decide for something consistent.
Base.require_one_based_indexing(arr)
if any(<(0), inner)
throw(ArgumentError("no inner repetition count may be negative; got $inner"))
end
if length(inner) < ndims(arr)
throw(ArgumentError("number of inner repetitions ($(length(inner))) cannot be less than number of dimensions of input array ($(ndims(arr)))"))
end
end
if outer !== nothing
if any(<(0), outer)
throw(ArgumentError("no outer repetition count may be negative; got $outer"))
end
if (length(outer) < ndims(arr)) && (inner !== nothing)
throw(ArgumentError("number of outer repetitions ($(length(outer))) cannot be less than number of dimensions of input array ($(ndims(arr)))"))
end
end
end
repeat_inner_outer(arr, inner::Nothing, outer::Nothing) = arr
repeat_inner_outer(arr, ::Nothing, outer) = repeat_outer(arr, outer)
repeat_inner_outer(arr, inner, ::Nothing) = repeat_inner(arr, inner)
repeat_inner_outer(arr, inner, outer) = repeat_outer(repeat_inner(arr, inner), outer)
function repeat_outer(a::AbstractMatrix, (m,n)::NTuple{2, Any})
o, p = size(a,1), size(a,2)
b = similar(a, o*m, p*n)
for j=1:n
d = (j-1)*p+1
R = d:d+p-1
for i=1:m
c = (i-1)*o+1
@inbounds b[c:c+o-1, R] = a
end
end
return b
end
function repeat_outer(a::AbstractVector, (m,)::Tuple{Any})
o = length(a)
b = similar(a, o*m)
for i=1:m
c = (i-1)*o+1
@inbounds b[c:c+o-1] = a
end
return b
end
function repeat_outer(arr::AbstractArray{<:Any,N}, dims::NTuple{N,Any}) where {N}
insize = size(arr)
outsize = map(*, insize, dims)
out = similar(arr, outsize)
for I in CartesianIndices(arr)
for J in CartesianIndices(dims)
TIJ = map(Tuple(I), Tuple(J), insize) do i, j, d
i + d * (j-1)
end
IJ = CartesianIndex(TIJ)
@inbounds out[IJ] = arr[I]
end
end
return out
end
function repeat_inner(arr, inner)
outsize = map(*, size(arr), inner)
out = similar(arr, outsize)
for I in CartesianIndices(arr)
for J in CartesianIndices(inner)
TIJ = map(Tuple(I), Tuple(J), inner) do i, j, d
(i-1) * d + j
end
IJ = CartesianIndex(TIJ)
@inbounds out[IJ] = arr[I]
end
end
return out
end
end#module
"""
eachrow(A::AbstractVecOrMat)
Create a generator that iterates over the first dimension of vector or matrix `A`,
returning the rows as `AbstractVector` views.
See also [`eachcol`](@ref), [`eachslice`](@ref), [`mapslices`](@ref).
!!! compat "Julia 1.1"
This function requires at least Julia 1.1.
# Example
```jldoctest
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> first(eachrow(a))
2-element view(::Matrix{Int64}, 1, :) with eltype Int64:
1
2
julia> collect(eachrow(a))
2-element Vector{SubArray{Int64, 1, Matrix{Int64}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}}, true}}:
[1, 2]
[3, 4]
```
"""
eachrow(A::AbstractVecOrMat) = (view(A, i, :) for i in axes(A, 1))
"""
eachcol(A::AbstractVecOrMat)
Create a generator that iterates over the second dimension of matrix `A`, returning the
columns as `AbstractVector` views.
See also [`eachrow`](@ref) and [`eachslice`](@ref).
!!! compat "Julia 1.1"
This function requires at least Julia 1.1.
# Example
```jldoctest
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> first(eachcol(a))
2-element view(::Matrix{Int64}, :, 1) with eltype Int64:
1
3
julia> collect(eachcol(a))
2-element Vector{SubArray{Int64, 1, Matrix{Int64}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true}}:
[1, 3]
[2, 4]
```
"""
eachcol(A::AbstractVecOrMat) = (view(A, :, i) for i in axes(A, 2))
"""
eachslice(A::AbstractArray; dims)
Create a generator that iterates over dimensions `dims` of `A`, returning views that select all
the data from the other dimensions in `A`.
Only a single dimension in `dims` is currently supported. Equivalent to `(view(A,:,:,...,i,:,:
...)) for i in axes(A, dims))`, where `i` is in position `dims`.
See also [`eachrow`](@ref), [`eachcol`](@ref), [`mapslices`](@ref), and [`selectdim`](@ref).
!!! compat "Julia 1.1"
This function requires at least Julia 1.1.
# Example
```jldoctest
julia> M = [1 2 3; 4 5 6; 7 8 9]
3×3 Matrix{Int64}:
1 2 3
4 5 6
7 8 9
julia> first(eachslice(M, dims=1))
3-element view(::Matrix{Int64}, 1, :) with eltype Int64:
1
2
3
julia> collect(eachslice(M, dims=2))
3-element Vector{SubArray{Int64, 1, Matrix{Int64}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true}}:
[1, 4, 7]
[2, 5, 8]
[3, 6, 9]
```
"""
@inline function eachslice(A::AbstractArray; dims)
length(dims) == 1 || throw(ArgumentError("only single dimensions are supported"))
dim = first(dims)
dim <= ndims(A) || throw(DimensionMismatch("A doesn't have $dim dimensions"))
inds_before = ntuple(Returns(:), dim-1)
inds_after = ntuple(Returns(:), ndims(A)-dim)
return (view(A, inds_before..., i, inds_after...) for i in axes(A, dim))
end