forked from pytorch/executorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontrol_flow.py
204 lines (167 loc) · 6.4 KB
/
control_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-strict
"""
This module contains tools for rewriting a dynamic PyTorch program such
that the dynamic part (e.g. control flow) can be properly captured by
DispatchTracer.
The core idea is annotating all branches in the graph with unique keys,
and using a dictionary of supplemental inputs as arguments to these
local branches so that every path gets a canonical input during tracing.
For example, consider the following usage of Python if statement:
.. code-block:: python
if pred:
...
ret = a
else:
...
ret = b
To rewrite the code to be tracable, users may use tracing_key decorator
and cond operator:
.. code-block:: python
@control_flow.tracing_context(inputs)
def branch_true(args):
...
return a
@control_flow.tracing_context(inputs)
def branch_false(args):
...
return b
ret = control_flow.cond(pred, branch_true, branch_false, args)
and we can use the usual exir.capture() function.
.. code-block:: python
exir.capture(module, args)
"""
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.utils._pytree as pytree
from executorch.exir.error import ExportError, ExportErrorType, internal_assert
from executorch.exir.tracer import (
DispatchTracer,
flattened_dispatch_trace,
PythonTensor,
tree_return,
unwrap_functional,
unwrap_proxy,
using_tracer,
Value,
)
from executorch.exir.wrap import update_with_proxy
def shape(x: torch.Tensor) -> Union[torch._C.Size, torch.Tensor]:
"""
A helper function for capturing the shape as a tensor from a tensor
value.
"""
tracer = DispatchTracer.get()
if tracer is None:
return x.shape
x = unwrap_functional(x)
if not isinstance(x, PythonTensor):
raise ExportError(
ExportErrorType.INVALID_INPUT_TYPE,
f"exir custom shape function only takes EXIR dispatch tensor, but got: {type(x)}",
)
# TODO _shape_as_tensor should work with functional tensor but currently not.
# TODO torch.tensor() should succeed under functionalization but currently not.
# see: https://github.com/pytorch/pytorch/pull/76319
tmp = torch.empty(len(x.shape), dtype=torch.int64)
for i, s in enumerate(x.shape):
tmp[i] = s
proxy = torch.ops.aten._shape_as_tensor.default(x.proxy)
return PythonTensor(unwrap_functional(tmp), proxy)
def _make_submodule(
fn: Callable[..., Union[torch.Tensor, Tuple[torch.Tensor]]],
example_returns: Optional[List[torch.Tensor]] = None,
single_return: bool = False,
) -> torch.fx.GraphModule:
if not hasattr(fn, "__tracing_inputs__"):
raise ExportError(
ExportErrorType.MISSING_PROPERTY,
f"Expect function '{fn.__name__}' to be decorated with tracing_context.",
)
# pyre-ignore
args = fn.__tracing_inputs__
# TODO(yidi): we don't want to enable here because we are not gonna use this code path in the future anyways
gm, _ = flattened_dispatch_trace(fn, args, set(), enable_functionalization=False)
output = next(iter(reversed(gm.graph.nodes)))
if example_returns:
internal_assert(
len(example_returns) == len(output.args[0]),
f"Eager mode of this {gm} returns {len(example_returns)} elements, but this graph returns {len(output.args[0])} elements",
)
if single_return:
# Force number of returned value to be 1.
internal_assert(
len(output.args[0]) == 1,
f"Graph {gm} should return just one element, but got {len(output.args[0])}",
)
output.args = tuple(output.args[0])
gm.recompile()
# pyre-fixme[16]: `GraphModule` has no attribute `__tracing_inputs__`.
gm.__tracing_inputs__ = args
return gm
def while_loop(
cond_fn: Callable[..., torch.Tensor],
body_fn: Callable[..., Tuple[torch.Tensor]],
init_val: pytree.PyTree,
) -> Union[Tuple[torch.Tensor], Value]:
"""
A higher order function returning the result based on executing body_fn
until cond_fn returns False.
"""
flattened_inputs, _ = pytree.tree_flatten(init_val)
if not all(isinstance(i, torch.Tensor) for i in flattened_inputs):
raise ExportError(
ExportErrorType.INVALID_INPUT_TYPE,
f"control_flow.while_loop() expects all inputs values to be tensors, actual inputs: {init_val}",
)
with using_tracer(None):
val = init_val
while cond_fn(*val):
val = body_fn(*val)
flattened_outputs, _ = pytree.tree_flatten(val)
if not all(isinstance(o, torch.Tensor) for o in flattened_outputs):
raise ExportError(
ExportErrorType.INVALID_OUTPUT_TYPE,
f"control_flow.while_loop() expects all returned values to be tensors, actual outputs: {val}",
)
tracer = DispatchTracer.get()
if tracer is None:
return val
gm_cond = _make_submodule(cond_fn, single_return=True)
gm_body = _make_submodule(body_fn)
proxies = tuple([unwrap_proxy(v) for v in flattened_inputs])
proxy = tracer.create_proxy(
"call_function",
while_loop,
(gm_cond, gm_body, proxies),
{},
)
return tree_return(val, proxy, update_with_proxy)
def tracing_context(
inputs: Tuple[torch.Tensor, ...],
) -> Callable[..., Callable[..., Union[torch.Tensor, Tuple[torch.Tensor]]]]:
"""
A decorator function to annotate code path that we conditionally
run during tracing. We need to annotate these paths for now because
during exir.capture(), the tracer does not know what's the proper
local inputs to be passed to the untaken path.
"""
def decorator(
f: Callable[..., Tuple[torch.Tensor]]
) -> Callable[..., Union[torch.Tensor, Tuple[torch.Tensor]]]:
def wrapper(
*args: torch.Tensor, **kwargs: Tuple[torch.Tensor]
) -> Tuple[torch.Tensor]:
if kwargs:
raise ExportError(
ExportErrorType.NOT_SUPPORTED,
"kwargs are not supported for @tracing_context decorated functions.",
)
return f(*args)
wrapper.__tracing_inputs__ = inputs # pyre-ignore
return wrapper
return decorator