forked from pytorch/executorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdim_order_utils.py
85 lines (65 loc) · 2.48 KB
/
dim_order_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Optional
import torch
"""
Set of simple utilities for translating between torch.memory_format and dim_order
"""
def _get_contiguous_dim_order(ndim: int) -> List[int]:
if ndim < 0:
raise AssertionError(
f"Unsupported rank for contiguous dim order. Only supports ndim greater than or equal to 0, but got {ndim}"
)
return list(range(ndim))
def _get_channels_last_dim_order(ndim: int) -> List[int]:
if ndim == 4:
return [0, 2, 3, 1]
raise AssertionError(
f"Unsupported rank for channels last dim order. Only support ndim equal to 4, but got {ndim}"
)
def get_memory_format(dim_order: Optional[List[int]]) -> torch.memory_format:
"""
Given a dim_order try to map it to torch.memory_format
"""
if dim_order is None:
return torch.preserve_format
elif dim_order == _get_contiguous_dim_order(len(dim_order)):
return torch.contiguous_format
elif len(dim_order) == 4 and dim_order == _get_channels_last_dim_order(
len(dim_order)
):
return torch.channels_last
raise AssertionError(
f"Failed to map a given dim_order: {dim_order} to a torch.memory_format"
)
def get_dim_order(
memory_format: Optional[torch.memory_format], ndim: int
) -> Optional[List[int]]:
"""
Given a memory_format and a tensor rank, generate a dim_order
"""
if memory_format in [None, torch.preserve_format]:
return None
elif memory_format == torch.contiguous_format:
return _get_contiguous_dim_order(ndim)
elif memory_format == torch.channels_last:
return _get_channels_last_dim_order(ndim)
raise AssertionError(
f"Failed to generate dim_order for a given memory format: {memory_format}"
)
def is_channel_last_dim_order(tensor: torch.Tensor) -> bool:
"""
Check if a tensor has channels last dim order
"""
if tensor.dim() != 4:
# Only support 4D tensors for channel list memory format.
return False
return tensor.dim_order() == tuple(_get_channels_last_dim_order(tensor.dim()))
def is_contiguous_dim_order(tensor: torch.Tensor) -> bool:
"""
Check if a tensor has contiguous dim order
"""
return tensor.dim_order() == tuple(_get_contiguous_dim_order(tensor.dim()))