-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
75 lines (56 loc) · 2.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
from torch import nn
from transformers import AutoModel, BertModel, RobertaModel
import os
class RelevanceNet(nn.Module):
def __init__(self, args):
super(RelevanceNet, self).__init__()
if args.plm == 'bertweet':
self.text_encoder = AutoModel.from_pretrained('vinai/bertweet-base')
elif args.plm == 'bert':
self.text_encoder = BertModel.from_pretrained('bert-base-uncased')
elif args.plm == 'roberta':
self.text_encoder = RobertaModel.from_pretrained('roberta-base')
else:
raise NotImplementedError
self.cls_l1 = nn.Linear(768, 128)
self.cls_l2 = nn.Linear(128, 12)
self.dropout = nn.Dropout(p=args.dropout)
self.act_fun = nn.GELU()
if args.finetune_type == 'cls':
for param in self.text_encoder.parameters():
param.requires_grad = False
def forward(self, ids_text, mask_text):
text_embeds = self.text_encoder(ids_text, mask_text).last_hidden_state
text_reps = text_embeds[:, 0, :] # [bs, 768]
out = self.cls_l1(text_reps)
out = self.act_fun(out)
out = self.dropout(out)
out = self.cls_l2(out)
return out
class IdeologyNet(nn.Module):
def __init__(self, args):
super(IdeologyNet, self).__init__()
if args.plm == 'bertweet':
self.plm_encoder = AutoModel.from_pretrained('vinai/bertweet-base')
elif args.plm == 'bert':
self.plm_encoder = BertModel.from_pretrained('bert-base-uncased')
elif args.plm == 'roberta':
self.plm_encoder = RobertaModel.from_pretrained('roberta-base')
else:
raise NotImplementedError
self.cls_l1 = nn.Linear(768, 128)
self.cls_l2 = nn.Linear(128, 3)
self.dropout = nn.Dropout(p=args.dropout)
self.act_fun = nn.GELU()
if args.finetune_type == 'cls':
for param in self.plm_encoder.parameters():
param.requires_grad = False
def forward(self, ids_text, mask_text):
text_embeds = self.plm_encoder(ids_text, mask_text).last_hidden_state
text_reps = text_embeds[:, 0, :] # [bs, 768]
out = self.cls_l1(text_reps)
out = self.act_fun(out)
out = self.dropout(out)
out = self.cls_l2(out)
return out