Skip to content

Latest commit

 

History

History
253 lines (233 loc) · 8.09 KB

README.md

File metadata and controls

253 lines (233 loc) · 8.09 KB

Kaggle Pytorch Numpy Pandas Python Wandb Anaconda

Face occlusion classification

git clone https://github.com/LamKser/face-occlusion-classification.git
cd face-occlusion-classification

💻 Hardware & Environment

  • All the train and test processes are done on google colab with GPU Tesla T4
    conda env create -f environment.yml
    conda activate face-occlusion
    

📚 Dataset

  • Crawl 9,749 images from the internet, crop the face by using FaceMaskDetection and divide into 2 classes:
    • 0 - Non-occluded face
    • 1 - Occluded face
Figure 1: Non-occluded face example
Figure 2: Occluded face example
  • Then split the dataset into 3 sets (7 - 2 - 1):

    • Train set : 6,826 images
    • Val set : 1,945 images
    • Test set : 978 images
  • Data structure:

    face_occlusion
    ├───Train
    │   ├───1
    │   │   ├─face_0.jpg
    │   │   ├─face_1.jpg
    │   │   └...
    │   └───0
    ├───Val
    │   ├───1
    │   └───0
    └───Test
        ├───1
        └───0
    
  • 🔗 Data link: face occlusion dataset

📐 Config

  • To use other model or change hyperparameters, you can edit train.yml and test.yml in configs folder
  • Available models: densenet169, resnet18, resnet50

🏗️ Train model

  • Train

    python train.py --opt configs/train.yml
    
  • Show the training and validation progress

    tensorboard --logdir logger
    
  • If using wandb to log training process:

    wandb:
        project: <Type your project>
        name: <Type experiment name>
    

📈 Test model

  • Test the model

    python test_model.py --opt configs/test.yml
    
  • Test single image

    python test_single_image.py --model <model_name> --weight <weight_path> --image <image_path>
    
  • ONNX model

    • Convert pytorch model to onnx

      python onnx/convert_2_onnx.py --model <model name> \\
                                    --weight <weight and checkpoint file> \\
                                    --save <path/to/save/onnx/*.onnx> \\
                                    --opset_version <version> (optional)
      
    • Run onnx model

      python onnx/run_onnx.py --onnx <onnx file> --img <your image>
      

📊 Results (Train/Val/Test)

  • All the trained model: trained model
  • The pretrained models are trained with 30 epochs

Last model

Model Params (M) Infer (ms) Accuracy Precision Recall F1 Weights
VGG16 134.2 7.76 0.9805 0.981 0.9789 0.9799 link
VGG19 139.5 9.36 0.9836 0.9831 0.9831 0.9831 link
VGG16-BN 134.2 8.3 0.9734 0.9746 0.9705 0.9725 link
VGG19-BN 139.5 10.01 0.9713 0.9765 0.9642 0.9703 link
DenseNet169 12.4 25.46 0.9795 0.9729 0.9852 0.979 link
DenseNet201 18 31.06 0.9744 0.9787 0.9684 0.9735 link
ResNet18 11.1 3.69 0.9703 0.9665 0.9726 0.9695 link
ResNet50 23.5 7.15 0.9754 0.9787 0.9705 0.9746 link
ResNet152 58.1 19.31 0.9805 0.983 0.9768 0.9799 link
ConvNeXt-Base 87.5 13.26 0.9867 0.9894 0.9831 0.9862 link
ConvNeXt-Small 49.4 11.54 0.9887 0.9853 0.9915 0.9884 link
ConvNeXt-Tiny 27.8 7.24 0.9867 0.9832 0.9894 0.9863 link