-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenetic_alg_py.py
178 lines (140 loc) · 5.96 KB
/
genetic_alg_py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import random
import matplotlib.pyplot as plt
import math as m
# 定义目标函数
def target_function(x):
return x[0] ** 2 + x[1] ** 2 + 8
# 定义约束条件
# x_1^2 - x_2 > 0
def constraint_function_1(x):
return x[0] ** 2 - x[1]
# -x_1 - x_2^2 +2 == 0
def constraint_function_2(x):
return -x[0] - x[1] ** 2 + 2
def decode(individual):
x1 = decode_gene_to_real(individual.gene[0])
x2 = decode_gene_to_real(individual.gene[1])
return [x1, x2]
# 定义解码函数 - 将编码空间基因映射到解空间
def decode_gene_to_real(gene):
# 解空间区间
lower_bound = 0
upper_bound = 9
val = int(''.join(map(str, gene)), 2)
max_val = 2 ** len(gene) - 1
return lower_bound + (val / max_val) * (upper_bound - lower_bound)
# 适应度函数,包括约束的惩罚
def fitness(x, alpha=10, beta=1000):
# 约束检查 Constraint Check
c1 = constraint_function_1(x)
c2 = constraint_function_2(x)
if c1 <= 0 or not m.isclose(c2, 0, abs_tol=1e-3):
c1_penalty = 0
c2_penalty = 0
if c1 <= 0: # 弱约束
c1_penalty = alpha * abs(c1)
if not m.isclose(c2, 0, abs_tol=1e-3): # 强约束
c2_penalty = beta * abs(c2)
# 最小值问题,fitness是以大为优,需要翻转
fitness_after_penalty = target_function(x) + c1_penalty + c2_penalty
return -fitness_after_penalty # penalty 严重惩罚不满足约束的个体
return -target_function(x)
# 定义个体,代表种群中的一个个体,个体的属性由gene,fitness组成
class Individual:
def __init__(self, gene):
self.gene = gene
self.fitness = self.calc_fitness()
# 计算适应度函数,这里以基因的平方和为例
# 适应度函数应根据具体问题进行定义
def calc_fitness(self):
x = decode(self)
return fitness(x)
# 种群初始化
def initialize_population():
# POPULATION_SIZE: 种群的大小
# GENES_LENGTH: 个体基因序列的长度
# 生成初始种群,每个个体由随机生成的基因序列组成
return [Individual([[random.randint(0, 1) for _ in range(GENES_LENGTH)] for _ in range(2)]) for _ in
range(POPULATION_SIZE)]
# 3. 定义GA基本操作
# 选择
def selection(population, num_of_parents):
# 选择种群中适应度高的前 num_of_parents 个个体
# (reverse=True)排列population中的individual.fitness(lambda x: x.fitness)
sorted_population = sorted(population, key=lambda x: x.fitness, reverse=True)
return sorted_population[:num_of_parents]
# 交叉
def crossover(parent1, parent2):
# 单点交叉
# parent1, parent2: 选择的两个父本个体
# 随机选择交叉点,交换父本基因,生成两个子代
if random.random() < CROSSOVER_RATE:
cross_point = random.randint(1, len(parent1.gene[0]) - 1)
child1_gene = [parent1.gene[0][cross_point:] + parent2.gene[0][:cross_point]
, parent1.gene[1][cross_point:] + parent2.gene[1][:cross_point]]
child2_gene = [parent2.gene[0][cross_point:] + parent1.gene[0][:cross_point]
, parent2.gene[1][cross_point:] + parent1.gene[1][:cross_point]]
return Individual(child1_gene), Individual(child2_gene)
else:
return parent1, parent2
# 突变
def mutation(individual):
# 对个体的基因序列进行随机变异
# individual: 要变异的个体
# MUTATION_RATE: 变异概率
for dim in range(2):
for i in range(len(individual.gene)):
if random.random() < MUTATION_RATE:
# gene序列中随机点发生突变
individual.gene[dim][i] = 1 if individual.gene[i] == 0 else 0
# 突变后更新fitness
individual.fitness = individual.calc_fitness()
# GA超参数设置,consist of population size, genes length, generation times, mutation rate
POPULATION_SIZE = 1000
GENES_LENGTH = 17
MAX_GENERATIONS = 1000
MUTATION_RATE = 0.01
CROSSOVER_RATE = 0.6
history = {'generation': [], 'fitness': []}
# 接口主函数
def genetic_algorithm():
# 1. 初始化种族
population = initialize_population()
global_best_individual = max(population, key=lambda x: x.fitness)
global_best_gen = 0
# 逻辑主循环
for gen in range(MAX_GENERATIONS):
# 2. 选择
parents = selection(population, len(population) // 2) # 选择一半的个体
offspring = []
while len(offspring) < POPULATION_SIZE:
# 3. 交叉
parent1, parent2 = random.sample(population, 2)
child1, child2 = crossover(parent1, parent2)
# 4. 突变
mutation(child1)
mutation(child2)
offspring.extend([child1, child2])
population = offspring
# 择出当代种群最优个体
local_best_individual = max(offspring, key=lambda x: x.fitness)
# 择出历代种群最优个体
if local_best_individual.fitness > global_best_individual.fitness:
global_best_individual = local_best_individual
global_best_gen = gen + 1
print(f"第{gen + 1}次进化,种群中个体最优适应度: {local_best_individual.fitness}")
history['generation'].append(gen + 1)
history['fitness'].append(local_best_individual.fitness)
return global_best_individual, global_best_gen
# main
best, best_gen = genetic_algorithm()
best_x = decode(best)
print(f"最优个体基因: {best.gene},最优个体适应度: {best.fitness},最优个体产生于第{best_gen}代")
print(f"解码后对应的最优解x={best_x},f(x)={target_function(best_x)}")
print(f"约束情况1:{constraint_function_1(best_x)};约束情况2:{constraint_function_2(best_x)}")
# plt
plt.plot(history['generation'], history['fitness'])
plt.title('GA')
plt.xlabel('gen')
plt.ylabel('fitness')
plt.show()