forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·231 lines (214 loc) · 8.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/usr/bin/env python
import argparse
import os
from pathlib import Path
import yaml
import ray
from ray.cluster_utils import Cluster
from ray.tune.config_parser import make_parser
from ray.tune.result import DEFAULT_RESULTS_DIR
from ray.tune.resources import resources_to_json
from ray.tune.tune import _make_scheduler, run_experiments
from ray.rllib.utils.framework import try_import_tf, try_import_torch
# Try to import both backends for flag checking/warnings.
tf = try_import_tf()
torch, _ = try_import_torch()
EXAMPLE_USAGE = """
Training example via RLlib CLI:
rllib train --run DQN --env CartPole-v0
Grid search example via RLlib CLI:
rllib train -f tuned_examples/cartpole-grid-search-example.yaml
Grid search example via executable:
./train.py -f tuned_examples/cartpole-grid-search-example.yaml
Note that -f overrides all other trial-specific command-line options.
"""
def create_parser(parser_creator=None):
parser = make_parser(
parser_creator=parser_creator,
formatter_class=argparse.RawDescriptionHelpFormatter,
description="Train a reinforcement learning agent.",
epilog=EXAMPLE_USAGE)
# See also the base parser definition in ray/tune/config_parser.py
parser.add_argument(
"--ray-address",
default=None,
type=str,
help="Connect to an existing Ray cluster at this address instead "
"of starting a new one.")
parser.add_argument(
"--no-ray-ui",
action="store_true",
help="Whether to disable the Ray web ui.")
parser.add_argument(
"--local-mode",
action="store_true",
help="Whether to run ray with `local_mode=True`. "
"Only if --ray-num-nodes is not used.")
parser.add_argument(
"--ray-num-cpus",
default=None,
type=int,
help="--num-cpus to use if starting a new cluster.")
parser.add_argument(
"--ray-num-gpus",
default=None,
type=int,
help="--num-gpus to use if starting a new cluster.")
parser.add_argument(
"--ray-num-nodes",
default=None,
type=int,
help="Emulate multiple cluster nodes for debugging.")
parser.add_argument(
"--ray-redis-max-memory",
default=None,
type=int,
help="--redis-max-memory to use if starting a new cluster.")
parser.add_argument(
"--ray-memory",
default=None,
type=int,
help="--memory to use if starting a new cluster.")
parser.add_argument(
"--ray-object-store-memory",
default=None,
type=int,
help="--object-store-memory to use if starting a new cluster.")
parser.add_argument(
"--experiment-name",
default="default",
type=str,
help="Name of the subdirectory under `local_dir` to put results in.")
parser.add_argument(
"--local-dir",
default=DEFAULT_RESULTS_DIR,
type=str,
help="Local dir to save training results to. Defaults to '{}'.".format(
DEFAULT_RESULTS_DIR))
parser.add_argument(
"--upload-dir",
default="",
type=str,
help="Optional URI to sync training results to (e.g. s3://bucket).")
parser.add_argument(
"-v", action="store_true", help="Whether to use INFO level logging.")
parser.add_argument(
"-vv", action="store_true", help="Whether to use DEBUG level logging.")
parser.add_argument(
"--resume",
action="store_true",
help="Whether to attempt to resume previous Tune experiments.")
parser.add_argument(
"--torch",
action="store_true",
help="Whether to use PyTorch (instead of tf) as the DL framework.")
parser.add_argument(
"--eager",
action="store_true",
help="Whether to attempt to enable TF eager execution.")
parser.add_argument(
"--trace",
action="store_true",
help="Whether to attempt to enable tracing for eager mode.")
parser.add_argument(
"--env", default=None, type=str, help="The gym environment to use.")
parser.add_argument(
"--queue-trials",
action="store_true",
help=(
"Whether to queue trials when the cluster does not currently have "
"enough resources to launch one. This should be set to True when "
"running on an autoscaling cluster to enable automatic scale-up."))
parser.add_argument(
"-f",
"--config-file",
default=None,
type=str,
help="If specified, use config options from this file. Note that this "
"overrides any trial-specific options set via flags above.")
return parser
def run(args, parser):
if args.config_file:
with open(args.config_file) as f:
experiments = yaml.safe_load(f)
else:
# Note: keep this in sync with tune/config_parser.py
experiments = {
args.experiment_name: { # i.e. log to ~/ray_results/default
"run": args.run,
"checkpoint_freq": args.checkpoint_freq,
"keep_checkpoints_num": args.keep_checkpoints_num,
"checkpoint_score_attr": args.checkpoint_score_attr,
"local_dir": args.local_dir,
"resources_per_trial": (
args.resources_per_trial and
resources_to_json(args.resources_per_trial)),
"stop": args.stop,
"config": dict(args.config, env=args.env),
"restore": args.restore,
"num_samples": args.num_samples,
"upload_dir": args.upload_dir,
}
}
verbose = 1
for exp in experiments.values():
# Bazel makes it hard to find files specified in `args` (and `data`).
# Look for them here.
# NOTE: Some of our yaml files don't have a `config` section.
if exp.get("config", {}).get("input") and \
not os.path.exists(exp["config"]["input"]):
# This script runs in the ray/rllib dir.
rllib_dir = Path(__file__).parent
input_file = rllib_dir.absolute().joinpath(exp["config"]["input"])
exp["config"]["input"] = str(input_file)
if not exp.get("run"):
parser.error("the following arguments are required: --run")
if not exp.get("env") and not exp.get("config", {}).get("env"):
parser.error("the following arguments are required: --env")
if args.eager:
exp["config"]["framework"] = "tfe"
elif args.torch:
exp["config"]["framework"] = "torch"
else:
exp["config"]["framework"] = "tf"
if args.v:
exp["config"]["log_level"] = "INFO"
verbose = 2
if args.vv:
exp["config"]["log_level"] = "DEBUG"
verbose = 3
if args.trace:
if exp["config"]["framework"] != "tfe":
raise ValueError("Must enable --eager to enable tracing.")
exp["config"]["eager_tracing"] = True
if args.ray_num_nodes:
cluster = Cluster()
for _ in range(args.ray_num_nodes):
cluster.add_node(
num_cpus=args.ray_num_cpus or 1,
num_gpus=args.ray_num_gpus or 0,
object_store_memory=args.ray_object_store_memory,
memory=args.ray_memory,
redis_max_memory=args.ray_redis_max_memory)
ray.init(address=cluster.address)
else:
ray.init(
include_webui=not args.no_ray_ui,
address=args.ray_address,
object_store_memory=args.ray_object_store_memory,
memory=args.ray_memory,
redis_max_memory=args.ray_redis_max_memory,
num_cpus=args.ray_num_cpus,
num_gpus=args.ray_num_gpus,
local_mode=args.local_mode)
run_experiments(
experiments,
scheduler=_make_scheduler(args),
queue_trials=args.queue_trials,
resume=args.resume,
verbose=verbose,
concurrent=True)
if __name__ == "__main__":
parser = create_parser()
args = parser.parse_args()
run(args, parser)