forked from JordanAsh/badge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
253 lines (220 loc) · 10.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import numpy as np
import sys
import gzip
import openml
import os
import argparse
from dataset import get_dataset, get_handler
from model import get_net
import vgg
import resnet
from sklearn.preprocessing import LabelEncoder
import torch.nn.functional as F
from torch import nn
from torchvision import transforms
import torch
import pdb
from scipy.stats import zscore
from query_strategies import RandomSampling, BadgeSampling, \
BaselineSampling, LeastConfidence, MarginSampling, \
EntropySampling, CoreSet, ActiveLearningByLearning, \
LeastConfidenceDropout, MarginSamplingDropout, EntropySamplingDropout, \
KMeansSampling, KCenterGreedy, BALDDropout, CoreSet, \
AdversarialBIM, AdversarialDeepFool, ActiveLearningByLearning
# code based on https://github.com/ej0cl6/deep-active-learning"
parser = argparse.ArgumentParser()
parser.add_argument('--alg', help='acquisition algorithm', type=str, default='rand')
parser.add_argument('--did', help='openML dataset index, if any', type=int, default=0)
parser.add_argument('--lr', help='learning rate', type=float, default=1e-3)
parser.add_argument('--model', help='model - resnet, vgg, or mlp', type=str, default='mlp')
parser.add_argument('--path', help='data path', type=str, default='data')
parser.add_argument('--data', help='dataset (non-openML)', type=str, default='')
parser.add_argument('--nQuery', help='number of points to query in a batch', type=int, default=100)
parser.add_argument('--nStart', help='number of points to start', type=int, default=100)
parser.add_argument('--nEnd', help = 'total number of points to query', type=int, default=50000)
parser.add_argument('--nEmb', help='number of embedding dims (mlp)', type=int, default=256)
opts = parser.parse_args()
# parameters
NUM_INIT_LB = opts.nStart
NUM_QUERY = opts.nQuery
NUM_ROUND = int((opts.nEnd - NUM_INIT_LB)/ opts.nQuery)
DATA_NAME = opts.data
# non-openml data defaults
args_pool = {'MNIST':
{'n_epoch': 10, 'transform': transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]),
'loader_tr_args':{'batch_size': 64, 'num_workers': 1},
'loader_te_args':{'batch_size': 1000, 'num_workers': 1},
'optimizer_args':{'lr': 0.01, 'momentum': 0.5}},
'FashionMNIST':
{'n_epoch': 10, 'transform': transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]),
'loader_tr_args':{'batch_size': 64, 'num_workers': 1},
'loader_te_args':{'batch_size': 1000, 'num_workers': 1},
'optimizer_args':{'lr': 0.01, 'momentum': 0.5}},
'SVHN':
{'n_epoch': 20, 'transform': transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.4377, 0.4438, 0.4728), (0.1980, 0.2010, 0.1970))]),
'loader_tr_args':{'batch_size': 64, 'num_workers': 1},
'loader_te_args':{'batch_size': 1000, 'num_workers': 1},
'optimizer_args':{'lr': 0.01, 'momentum': 0.5}},
'CIFAR10':
{'n_epoch': 3, 'transform': transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))]),
'loader_tr_args':{'batch_size': 128, 'num_workers': 1},
'loader_te_args':{'batch_size': 1000, 'num_workers': 1},
'optimizer_args':{'lr': 0.05, 'momentum': 0.3},
'transformTest': transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))])}
}
args_pool['CIFAR10'] = {'n_epoch': 3,
'transform': transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))]),
'loader_tr_args':{'batch_size': 128, 'num_workers': 3},
'loader_te_args':{'batch_size': 1000, 'num_workers': 1},
'optimizer_args':{'lr': 0.05, 'momentum': 0.3},
'transformTest': transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))])
}
opts.nClasses = 10
args_pool['CIFAR10']['transform'] = args_pool['CIFAR10']['transformTest'] # remove data augmentation
args_pool['MNIST']['transformTest'] = args_pool['MNIST']['transform']
args_pool['SVHN']['transformTest'] = args_pool['SVHN']['transform']
if opts.did == 0: args = args_pool[DATA_NAME]
if not os.path.exists(opts.path):
os.makedirs(opts.path)
# load openml dataset if did is supplied
if opts.did > 0:
openml.config.apikey = '3411e20aff621cc890bf403f104ac4bc'
openml.config.set_cache_directory(opts.path)
ds = openml.datasets.get_dataset(opts.did)
data = ds.get_data(target=ds.default_target_attribute)
X = np.asarray(data[0])
y = np.asarray(data[1])
y = LabelEncoder().fit(y).transform(y)
opts.nClasses = int(max(y) + 1)
nSamps, opts.dim = np.shape(X)
testSplit = .1
inds = np.random.permutation(nSamps)
X = X[inds]
y = y[inds]
split =int((1. - testSplit) * nSamps)
while True:
inds = np.random.permutation(split)
if len(inds) > 50000: inds = inds[:50000]
X_tr = X[:split]
X_tr = X_tr[inds]
X_tr = torch.Tensor(X_tr)
y_tr = y[:split]
y_tr = y_tr[inds]
Y_tr = torch.Tensor(y_tr).long()
X_te = torch.Tensor(X[split:])
Y_te = torch.Tensor(y[split:]).long()
if len(np.unique(Y_tr)) == opts.nClasses: break
args = {'transform':transforms.Compose([transforms.ToTensor()]),
'n_epoch':10,
'loader_tr_args':{'batch_size': 128, 'num_workers': 1},
'loader_te_args':{'batch_size': 1000, 'num_workers': 1},
'optimizer_args':{'lr': 0.01, 'momentum': 0},
'transformTest':transforms.Compose([transforms.ToTensor()])}
handler = get_handler('other')
# load non-openml dataset
else:
X_tr, Y_tr, X_te, Y_te = get_dataset(DATA_NAME, opts.path)
opts.dim = np.shape(X_tr)[1:]
handler = get_handler(opts.data)
args['lr'] = opts.lr
# start experiment
n_pool = len(Y_tr)
n_test = len(Y_te)
print('number of labeled pool: {}'.format(NUM_INIT_LB), flush=True)
print('number of unlabeled pool: {}'.format(n_pool - NUM_INIT_LB), flush=True)
print('number of testing pool: {}'.format(n_test), flush=True)
# generate initial labeled pool
idxs_lb = np.zeros(n_pool, dtype=bool)
idxs_tmp = np.arange(n_pool)
np.random.shuffle(idxs_tmp)
idxs_lb[idxs_tmp[:NUM_INIT_LB]] = True
# linear model class
class linMod(nn.Module):
def __init__(self, nc=1, sz=28):
super(linMod, self).__init__()
self.lm = nn.Linear(int(np.prod(dim)), opts.nClasses)
def forward(self, x):
x = x.view(-1, int(np.prod(dim)))
out = self.lm(x)
return out, x
def get_embedding_dim(self):
return int(np.prod(dim))
# mlp model class
class mlpMod(nn.Module):
def __init__(self, dim, embSize=256):
super(mlpMod, self).__init__()
self.embSize = embSize
self.dim = int(np.prod(dim))
self.lm1 = nn.Linear(self.dim, embSize)
self.lm2 = nn.Linear(embSize, opts.nClasses)
def forward(self, x):
x = x.view(-1, self.dim)
emb = F.relu(self.lm1(x))
out = self.lm2(emb)
return out, emb
def get_embedding_dim(self):
return self.embSize
# load specified network
if opts.model == 'mlp':
net = mlpMod(opts.dim, embSize=opts.nEmb)
elif opts.model == 'resnet':
net = resnet.ResNet18()
elif opts.model == 'vgg':
net = vgg.VGG('VGG16')
else:
print('choose a valid model - mlp, resnet, or vgg', flush=True)
raise ValueError
if opts.did > 0 and opts.model != 'mlp':
print('openML datasets only work with mlp', flush=True)
raise ValueError
if type(X_tr[0]) is not np.ndarray:
X_tr = X_tr.numpy()
# set up the specified sampler
if opts.alg == 'rand': # random sampling
strategy = RandomSampling(X_tr, Y_tr, idxs_lb, net, handler, args)
elif opts.alg == 'conf': # confidence-based sampling
strategy = LeastConfidence(X_tr, Y_tr, idxs_lb, net, handler, args)
elif opts.alg == 'marg': # margin-based sampling
strategy = MarginSampling(X_tr, Y_tr, idxs_lb, net, handler, args)
elif opts.alg == 'badge': # batch active learning by diverse gradient embeddings
strategy = BadgeSampling(X_tr, Y_tr, idxs_lb, net, handler, args)
elif opts.alg == 'coreset': # coreset sampling
strategy = CoreSet(X_tr, Y_tr, idxs_lb, net, handler, args)
elif opts.alg == 'entropy': # entropy-based sampling
strategy = EntropySampling(X_tr, Y_tr, idxs_lb, net, handler, args)
elif opts.alg == 'baseline': # badge but with k-DPP sampling instead of k-means++
strategy = BaselineSampling(X_tr, Y_tr, idxs_lb, net, handler, args)
elif opts.alg == 'albl': # active learning by learning
albl_list = [LeastConfidence(X_tr, Y_tr, idxs_lb, net, handler, args),
CoreSet(X_tr, Y_tr, idxs_lb, net, handler, args)]
strategy = ActiveLearningByLearning(X_tr, Y_tr, idxs_lb, net, handler, args, strategy_list=albl_list, delta=0.1)
else:
print('choose a valid acquisition function', flush=True)
raise ValueError
# print info
if opts.did > 0: DATA_NAME='OML' + str(opts.did)
print(DATA_NAME, flush=True)
print(type(strategy).__name__, flush=True)
# round 0 accuracy
strategy.train()
P = strategy.predict(X_te, Y_te)
acc = np.zeros(NUM_ROUND+1)
acc[0] = 1.0 * (Y_te == P).sum().item() / len(Y_te)
print(str(opts.nStart) + '\ttesting accuracy {}'.format(acc[0]), flush=True)
for rd in range(1, NUM_ROUND+1):
print('Round {}'.format(rd), flush=True)
# query
output = strategy.query(NUM_QUERY)
q_idxs = output
idxs_lb[q_idxs] = True
# report weighted accuracy
corr = (strategy.predict(X_tr[q_idxs], torch.Tensor(Y_tr.numpy()[q_idxs]).long())).numpy() == Y_tr.numpy()[q_idxs]
# update
strategy.update(idxs_lb)
strategy.train()
# round accuracy
P = strategy.predict(X_te, Y_te)
acc[rd] = 1.0 * (Y_te == P).sum().item() / len(Y_te)
print(str(sum(idxs_lb)) + '\t' + 'testing accuracy {}'.format(acc[rd]), flush=True)
if sum(~strategy.idxs_lb) < opts.nQuery:
sys.exit('too few remaining points to query')