forked from naturomics/CapsNet-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
146 lines (112 loc) · 4.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import scipy
import numpy as np
import tensorflow as tf
def load_mnist(batch_size, is_training=True):
path = os.path.join('data', 'mnist')
if is_training:
fd = open(os.path.join(path, 'train-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
trainX = loaded[16:].reshape((60000, 28, 28, 1)).astype(np.float32)
fd = open(os.path.join(path, 'train-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
trainY = loaded[8:].reshape((60000)).astype(np.int32)
trX = trainX[:55000] / 255.
trY = trainY[:55000]
valX = trainX[55000:, ] / 255.
valY = trainY[55000:]
num_tr_batch = 55000 // batch_size
num_val_batch = 5000 // batch_size
return trX, trY, num_tr_batch, valX, valY, num_val_batch
else:
fd = open(os.path.join(path, 't10k-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
teX = loaded[16:].reshape((10000, 28, 28, 1)).astype(np.float)
fd = open(os.path.join(path, 't10k-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
teY = loaded[8:].reshape((10000)).astype(np.int32)
num_te_batch = 10000 // batch_size
return teX / 255., teY, num_te_batch
def load_fashion_mnist(batch_size, is_training=True):
path = os.path.join('data', 'fashion-mnist')
if is_training:
fd = open(os.path.join(path, 'train-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
trainX = loaded[16:].reshape((60000, 28, 28, 1)).astype(np.float32)
fd = open(os.path.join(path, 'train-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
trainY = loaded[8:].reshape((60000)).astype(np.int32)
trX = trainX[:55000] / 255.
trY = trainY[:55000]
valX = trainX[55000:, ] / 255.
valY = trainY[55000:]
num_tr_batch = 55000 // batch_size
num_val_batch = 5000 // batch_size
return trX, trY, num_tr_batch, valX, valY, num_val_batch
else:
fd = open(os.path.join(path, 't10k-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
teX = loaded[16:].reshape((10000, 28, 28, 1)).astype(np.float)
fd = open(os.path.join(path, 't10k-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
teY = loaded[8:].reshape((10000)).astype(np.int32)
num_te_batch = 10000 // batch_size
return teX / 255., teY, num_te_batch
def load_data(dataset, batch_size, is_training=True, one_hot=False):
if dataset == 'mnist':
return load_mnist(batch_size, is_training)
elif dataset == 'fashion-mnist':
return load_fashion_mnist(batch_size, is_training)
else:
raise Exception('Invalid dataset, please check the name of dataset:', dataset)
def get_batch_data(dataset, batch_size, num_threads):
if dataset == 'mnist':
trX, trY, num_tr_batch, valX, valY, num_val_batch = load_mnist(batch_size, is_training=True)
elif dataset == 'fashion-mnist':
trX, trY, num_tr_batch, valX, valY, num_val_batch = load_fashion_mnist(batch_size, is_training=True)
data_queues = tf.train.slice_input_producer([trX, trY])
X, Y = tf.train.shuffle_batch(data_queues, num_threads=num_threads,
batch_size=batch_size,
capacity=batch_size * 64,
min_after_dequeue=batch_size * 32,
allow_smaller_final_batch=False)
return(X, Y)
def save_images(imgs, size, path):
'''
Args:
imgs: [batch_size, image_height, image_width]
size: a list with tow int elements, [image_height, image_width]
path: the path to save images
'''
imgs = (imgs + 1.) / 2 # inverse_transform
return(scipy.misc.imsave(path, mergeImgs(imgs, size)))
def mergeImgs(images, size):
h, w = images.shape[1], images.shape[2]
imgs = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
imgs[j * h:j * h + h, i * w:i * w + w, :] = image
return imgs
# For version compatibility
def reduce_sum(input_tensor, axis=None, keepdims=False):
try:
return tf.reduce_sum(input_tensor, axis=axis, keepdims=keepdims)
except:
return tf.reduce_sum(input_tensor, axis=axis, keep_dims=keepdims)
# For version compatibility
def softmax(logits, axis=None):
try:
return tf.nn.softmax(logits, axis=axis)
except:
return tf.nn.softmax(logits, dim=axis)
def get_shape(inputs, name=None):
name = "shape" if name is None else name
with tf.name_scope(name):
static_shape = inputs.get_shape().as_list()
dynamic_shape = tf.shape(inputs)
shape = []
for i, dim in enumerate(static_shape):
dim = dim if dim is not None else dynamic_shape[i]
shape.append(dim)
return(shape)