forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoord-transform.r
240 lines (216 loc) · 7.49 KB
/
coord-transform.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#' Transformed Cartesian coordinate system
#'
#' `coord_trans` is different to scale transformations in that it occurs after
#' statistical transformation and will affect the visual appearance of geoms - there is
#' no guarantee that straight lines will continue to be straight.
#'
#' Transformations only work with continuous values: see
#' [scales::trans_new()] for list of transformations, and instructions
#' on how to create your own.
#'
#' @inheritParams coord_cartesian
#' @param x,y Transformers for x and y axes or their names.
#' @param limx,limy **Deprecated**: use `xlim` and `ylim` instead.
#' @export
#' @examples
#' \donttest{
#' # See ?geom_boxplot for other examples
#'
#' # Three ways of doing transformation in ggplot:
#' # * by transforming the data
#' ggplot(diamonds, aes(log10(carat), log10(price))) +
#' geom_point()
#' # * by transforming the scales
#' ggplot(diamonds, aes(carat, price)) +
#' geom_point() +
#' scale_x_log10() +
#' scale_y_log10()
#' # * by transforming the coordinate system:
#' ggplot(diamonds, aes(carat, price)) +
#' geom_point() +
#' coord_trans(x = "log10", y = "log10")
#'
#' # The difference between transforming the scales and
#' # transforming the coordinate system is that scale
#' # transformation occurs BEFORE statistics, and coordinate
#' # transformation afterwards. Coordinate transformation also
#' # changes the shape of geoms:
#'
#' d <- subset(diamonds, carat > 0.5)
#'
#' ggplot(d, aes(carat, price)) +
#' geom_point() +
#' geom_smooth(method = "lm") +
#' scale_x_log10() +
#' scale_y_log10()
#'
#' ggplot(d, aes(carat, price)) +
#' geom_point() +
#' geom_smooth(method = "lm") +
#' coord_trans(x = "log10", y = "log10")
#'
#' # Here I used a subset of diamonds so that the smoothed line didn't
#' # drop below zero, which obviously causes problems on the log-transformed
#' # scale
#'
#' # With a combination of scale and coordinate transformation, it's
#' # possible to do back-transformations:
#' ggplot(diamonds, aes(carat, price)) +
#' geom_point() +
#' geom_smooth(method = "lm") +
#' scale_x_log10() +
#' scale_y_log10() +
#' coord_trans(x = scales::exp_trans(10), y = scales::exp_trans(10))
#'
#' # cf.
#' ggplot(diamonds, aes(carat, price)) +
#' geom_point() +
#' geom_smooth(method = "lm")
#'
#' # Also works with discrete scales
#' df <- data.frame(a = abs(rnorm(26)),letters)
#' plot <- ggplot(df,aes(a,letters)) + geom_point()
#'
#' plot + coord_trans(x = "log10")
#' plot + coord_trans(x = "sqrt")
#' }
coord_trans <- function(x = "identity", y = "identity", xlim = NULL, ylim = NULL,
limx = "DEPRECATED", limy = "DEPRECATED", clip = "on", expand = TRUE) {
if (!missing(limx)) {
warning("`limx` argument is deprecated; please use `xlim` instead.", call. = FALSE)
xlim <- limx
}
if (!missing(limy)) {
warning("`limy` argument is deprecated; please use `ylim` instead.", call. = FALSE)
ylim <- limy
}
# resolve transformers
if (is.character(x)) x <- as.trans(x)
if (is.character(y)) y <- as.trans(y)
ggproto(NULL, CoordTrans,
trans = list(x = x, y = y),
limits = list(x = xlim, y = ylim),
expand = expand,
clip = clip
)
}
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
CoordTrans <- ggproto("CoordTrans", Coord,
is_free = function() TRUE,
distance = function(self, x, y, panel_params) {
max_dist <- dist_euclidean(panel_params$x.range, panel_params$y.range)
dist_euclidean(self$trans$x$transform(x), self$trans$y$transform(y)) / max_dist
},
backtransform_range = function(self, panel_params) {
list(
x = self$trans$x$inverse(panel_params$x.range),
y = self$trans$y$inverse(panel_params$y.range)
)
},
range = function(self, panel_params) {
list(
x = panel_params$x.range,
y = panel_params$y.range
)
},
transform = function(self, data, panel_params) {
trans_x <- function(data) transform_value(self$trans$x, data, panel_params$x.range)
trans_y <- function(data) transform_value(self$trans$y, data, panel_params$y.range)
new_data <- transform_position(data, trans_x, trans_y)
warn_new_infinites(data$x, new_data$x, "x")
warn_new_infinites(data$y, new_data$y, "y")
transform_position(new_data, squish_infinite, squish_infinite)
},
setup_panel_params = function(self, scale_x, scale_y, params = list()) {
c(
train_trans(scale_x, self$limits$x, self$trans$x, "x", self$expand),
train_trans(scale_y, self$limits$y, self$trans$y, "y", self$expand)
)
},
render_bg = function(panel_params, theme) {
guide_grid(
theme,
panel_params$x.minor,
panel_params$x.major,
panel_params$y.minor,
panel_params$y.major
)
},
render_axis_h = function(panel_params, theme) {
arrange <- panel_params$x.arrange %||% c("secondary", "primary")
list(
top = render_axis(panel_params, arrange[1], "x", "top", theme),
bottom = render_axis(panel_params, arrange[2], "x", "bottom", theme)
)
},
render_axis_v = function(panel_params, theme) {
arrange <- panel_params$y.arrange %||% c("primary", "secondary")
list(
left = render_axis(panel_params, arrange[1], "y", "left", theme),
right = render_axis(panel_params, arrange[2], "y", "right", theme)
)
}
)
transform_value <- function(trans, value, range) {
if (is.null(value))
return(value)
rescale(trans$transform(value), 0:1, range)
}
train_trans <- function(scale, coord_limits, trans, name, expand = TRUE) {
expansion <- default_expansion(scale, expand = expand)
scale_trans <- scale$trans %||% identity_trans()
coord_limits <- coord_limits %||% scale_trans$inverse(c(NA, NA))
if (scale$is_discrete()) {
continuous_ranges <- expand_limits_discrete_trans(
scale$get_limits(),
expansion,
coord_limits,
trans,
range_continuous = scale$range_c$range
)
} else {
# transform user-specified limits to scale transformed space
coord_limits <- scale$trans$transform(coord_limits)
continuous_ranges <- expand_limits_continuous_trans(
scale$get_limits(),
expansion,
coord_limits,
trans
)
}
# calculate break information
out <- scale$break_info(continuous_ranges$continuous_range)
# range in coord space has already been calculated
# needs to be in increasing order for transform_value() to work
out$range <- range(continuous_ranges$continuous_range_coord)
# major and minor values in coordinate data
out$major_source <- transform_value(trans, out$major_source, out$range)
out$minor_source <- transform_value(trans, out$minor_source, out$range)
out$sec.major_source <- transform_value(trans, out$sec.major_source, out$range)
out$sec.minor_source <- transform_value(trans, out$sec.minor_source, out$range)
out <- list(
range = out$range,
labels = out$labels,
major = out$major_source,
minor = out$minor_source,
sec.labels = out$sec.labels,
sec.major = out$sec.major_source,
sec.minor = out$sec.minor_source
)
names(out) <- paste(name, names(out), sep = ".")
out
}
#' Generate warning when finite values are transformed into infinite values
#'
#' @param old_values A vector of pre-transformation values.
#' @param new_values A vector of post-transformation values.
#' @param axis Which axis the values originate from (e.g. x, y).
#' @noRd
warn_new_infinites <- function(old_values, new_values, axis) {
if (any(is.finite(old_values) & !is.finite(new_values))) {
warning("Transformation introduced infinite values in ", axis, "-axis", call. = FALSE)
}
}