forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacet-.r
639 lines (580 loc) · 20.2 KB
/
facet-.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
#' @include ggproto.r
NULL
#' @section Facets:
#'
#' All `facet_*` functions returns a `Facet` object or an object of a
#' `Facet` subclass. This object describes how to assign data to different
#' panels, how to apply positional scales and how to lay out the panels, once
#' rendered.
#'
#' Extending facets can range from the simple modifications of current facets,
#' to very laborious rewrites with a lot of [gtable()] manipulation.
#' For some examples of both, please see the extension vignette.
#'
#' `Facet` subclasses, like other extendible ggproto classes, have a range
#' of methods that can be modified. Some of these are required for all new
#' subclasses, while other only need to be modified if need arises.
#'
#' The required methods are:
#'
#' - `compute_layout`: Based on layer data compute a mapping between
#' panels, axes, and potentially other parameters such as faceting variable
#' level etc. This method must return a data.frame containing at least the
#' columns `PANEL`, `SCALE_X`, and `SCALE_Y` each containing
#' integer keys mapping a PANEL to which axes it should use. In addition the
#' data.frame can contain whatever other information is necessary to assign
#' observations to the correct panel as well as determining the position of
#' the panel.
#'
#' - `map_data`: This method is supplied the data for each layer in
#' turn and is expected to supply a `PANEL` column mapping each row to a
#' panel defined in the layout. Additionally this method can also add or
#' subtract data points as needed e.g. in the case of adding margins to
#' `facet_grid`.
#'
#' - `draw_panels`: This is where the panels are assembled into a
#' `gtable` object. The method receives, among others, a list of grobs
#' defining the content of each panel as generated by the Geoms and Coord
#' objects. The responsibility of the method is to decorate the panels with
#' axes and strips as needed, as well as position them relative to each other
#' in a gtable. For some of the automatic functions to work correctly, each
#' panel, axis, and strip grob name must be prefixed with "panel", "axis", and
#' "strip" respectively.
#'
#' In addition to the methods described above, it is also possible to override
#' the default behaviour of one or more of the following methods:
#'
#' - `setup_params`:
#' - `init_scales`: Given a master scale for x and y, create panel
#' specific scales for each panel defined in the layout. The default is to
#' simply clone the master scale.
#'
#' - `train_scales`: Based on layer data train each set of panel
#' scales. The default is to train it on the data related to the panel.
#'
#' - `finish_data`: Make last-minute modifications to layer data
#' before it is rendered by the Geoms. The default is to not modify it.
#'
#' - `draw_back`: Add a grob in between the background defined by the
#' Coord object (usually the axis grid) and the layer stack. The default is to
#' return an empty grob for each panel.
#'
#' - `draw_front`: As above except the returned grob is placed
#' between the layer stack and the foreground defined by the Coord object
#' (usually empty). The default is, as above, to return an empty grob.
#'
#' - `draw_labels`: Given the gtable returned by `draw_panels`,
#' add axis titles to the gtable. The default is to add one title at each side
#' depending on the position and existence of axes.
#'
#' All extension methods receive the content of the params field as the params
#' argument, so the constructor function will generally put all relevant
#' information into this field. The only exception is the `shrink`
#' parameter which is used to determine if scales are retrained after Stat
#' transformations has been applied.
#'
#' @rdname ggplot2-ggproto
#' @format NULL
#' @usage NULL
#' @export
Facet <- ggproto("Facet", NULL,
shrink = FALSE,
params = list(),
compute_layout = function(data, params) {
stop("Not implemented", call. = FALSE)
},
map_data = function(data, layout, params) {
stop("Not implemented", call. = FALSE)
},
init_scales = function(layout, x_scale = NULL, y_scale = NULL, params) {
scales <- list()
if (!is.null(x_scale)) {
scales$x <- lapply(seq_len(max(layout$SCALE_X)), function(i) x_scale$clone())
}
if (!is.null(y_scale)) {
scales$y <- lapply(seq_len(max(layout$SCALE_Y)), function(i) y_scale$clone())
}
scales
},
train_scales = function(x_scales, y_scales, layout, data, params) {
# loop over each layer, training x and y scales in turn
for (layer_data in data) {
match_id <- match(layer_data$PANEL, layout$PANEL)
if (!is.null(x_scales)) {
x_vars <- intersect(x_scales[[1]]$aesthetics, names(layer_data))
SCALE_X <- layout$SCALE_X[match_id]
scale_apply(layer_data, x_vars, "train", SCALE_X, x_scales)
}
if (!is.null(y_scales)) {
y_vars <- intersect(y_scales[[1]]$aesthetics, names(layer_data))
SCALE_Y <- layout$SCALE_Y[match_id]
scale_apply(layer_data, y_vars, "train", SCALE_Y, y_scales)
}
}
},
draw_back = function(data, layout, x_scales, y_scales, theme, params) {
rep(list(zeroGrob()), length(unique(layout$PANEL)))
},
draw_front = function(data, layout, x_scales, y_scales, theme, params) {
rep(list(zeroGrob()), length(unique(layout$PANEL)))
},
draw_panels = function(panels, layout, x_scales, y_scales, ranges, coord, data, theme, params) {
stop("Not implemented", call. = FALSE)
},
draw_labels = function(panels, layout, x_scales, y_scales, ranges, coord, data, theme, labels, params) {
panel_dim <- find_panel(panels)
xlab_height_top <- grobHeight(labels$x[[1]])
panels <- gtable_add_rows(panels, xlab_height_top, pos = 0)
panels <- gtable_add_grob(panels, labels$x[[1]], name = "xlab-t",
l = panel_dim$l, r = panel_dim$r, t = 1, clip = "off")
xlab_height_bottom <- grobHeight(labels$x[[2]])
panels <- gtable_add_rows(panels, xlab_height_bottom, pos = -1)
panels <- gtable_add_grob(panels, labels$x[[2]], name = "xlab-b",
l = panel_dim$l, r = panel_dim$r, t = -1, clip = "off")
panel_dim <- find_panel(panels)
ylab_width_left <- grobWidth(labels$y[[1]])
panels <- gtable_add_cols(panels, ylab_width_left, pos = 0)
panels <- gtable_add_grob(panels, labels$y[[1]], name = "ylab-l",
l = 1, b = panel_dim$b, t = panel_dim$t, clip = "off")
ylab_width_right <- grobWidth(labels$y[[2]])
panels <- gtable_add_cols(panels, ylab_width_right, pos = -1)
panels <- gtable_add_grob(panels, labels$y[[2]], name = "ylab-r",
l = -1, b = panel_dim$b, t = panel_dim$t, clip = "off")
panels
},
setup_params = function(data, params) {
params
},
setup_data = function(data, params) {
data
},
finish_data = function(data, layout, x_scales, y_scales, params) {
data
},
vars = function() {
character(0)
}
)
# Helpers -----------------------------------------------------------------
#' Quote faceting variables
#'
#' @description
#' Just like [aes()], `vars()` is a [quoting function][rlang::quotation]
#' that takes inputs to be evaluated in the context of a dataset.
#' These inputs can be:
#'
#' * variable names
#' * complex expressions
#'
#' In both cases, the results (the vectors that the variable
#' represents or the results of the expressions) are used to form
#' faceting groups.
#'
#' @param ... Variables or expressions automatically quoted. These are
#' evaluated in the context of the data to form faceting groups. Can
#' be named (the names are passed to a [labeller][labellers]).
#'
#' @seealso [aes()], [facet_wrap()], [facet_grid()]
#' @export
#' @examples
#' p <- ggplot(mtcars, aes(wt, disp)) + geom_point()
#' p + facet_wrap(vars(vs, am))
#'
#' # vars() makes it easy to pass variables from wrapper functions:
#' wrap_by <- function(...) {
#' facet_wrap(vars(...), labeller = label_both)
#' }
#' p + wrap_by(vs)
#' p + wrap_by(vs, am)
#'
#' # You can also supply expressions to vars(). In this case it's often a
#' # good idea to supply a name as well:
#' p + wrap_by(drat = cut_number(drat, 3))
#'
#' # Let's create another function for cutting and wrapping a
#' # variable. This time it will take a named argument instead of dots,
#' # so we'll have to use the "enquote and unquote" pattern:
#' wrap_cut <- function(var, n = 3) {
#' # Let's enquote the named argument `var` to make it auto-quoting:
#' var <- enquo(var)
#'
#' # `quo_name()` will create a nice default name:
#' nm <- quo_name(var)
#'
#' # Now let's unquote everything at the right place. Note that we also
#' # unquote `n` just in case the data frame has a column named
#' # `n`. The latter would have precedence over our local variable
#' # because the data is always masking the environment.
#' wrap_by(!!nm := cut_number(!!var, !!n))
#' }
#'
#' # Thanks to tidy eval idioms we now have another useful wrapper:
#' p + wrap_cut(drat)
vars <- function(...) {
quos(...)
}
#' Is this object a faceting specification?
#'
#' @param x object to test
#' @keywords internal
#' @export
is.facet <- function(x) inherits(x, "Facet")
# A "special" value, currently not used but could be used to determine
# if faceting is active
NO_PANEL <- -1L
unique_combs <- function(df) {
if (length(df) == 0) return()
unique_values <- lapply(df, ulevels)
rev(expand.grid(rev(unique_values), stringsAsFactors = FALSE,
KEEP.OUT.ATTRS = TRUE))
}
df.grid <- function(a, b) {
if (is.null(a) || nrow(a) == 0) return(b)
if (is.null(b) || nrow(b) == 0) return(a)
indexes <- expand.grid(
i_a = seq_len(nrow(a)),
i_b = seq_len(nrow(b))
)
unrowname(cbind(
a[indexes$i_a, , drop = FALSE],
b[indexes$i_b, , drop = FALSE]
))
}
# A facets spec is a list of facets. A grid facetting needs two facets
# while a wrap facetting flattens all dimensions and thus accepts any
# number of facets.
#
# A facets is a list of grouping variables. They are typically
# supplied as variable names but can be expressions.
#
# as_facets() is complex due to historical baggage but its main
# purpose is to create a facets spec from a formula: a + b ~ c + d
# creates a facets list with two components, each of which bundles two
# facetting variables.
as_facets_list <- function(x) {
if (inherits(x, "uneval")) {
stop("Please use `vars()` to supply facet variables", call. = FALSE)
}
if (is_quosures(x)) {
x <- quos_auto_name(x)
return(list(x))
}
# This needs to happen early because we might get a formula.
# facet_grid() directly converted strings to a formula while
# facet_wrap() called as.quoted(). Hence this is a little more
# complicated for backward compatibility.
if (is_string(x)) {
x <- parse_expr(x)
}
# At this level formulas are coerced to lists of lists for backward
# compatibility with facet_grid(). The LHS and RHS are treated as
# distinct facet dimensions and `+` defines multiple facet variables
# inside each dimension.
if (is_formula(x)) {
return(f_as_facets_list(x))
}
# For backward-compatibility with facet_wrap()
if (!is_bare_list(x)) {
x <- as_quoted(x)
}
# If we have a list there are two possibilities. We may already have
# a proper facet spec structure. Otherwise we coerce each element
# with as_quoted() for backward compatibility with facet_grid().
if (is.list(x)) {
x <- lapply(x, as_facets)
}
x
}
# Flatten a list of quosures objects to a quosures object, and compact it
compact_facets <- function(x) {
x <- flatten_if(x, is_list)
null <- vapply(x, quo_is_null, logical(1))
new_quosures(x[!null])
}
# Compatibility with plyr::as.quoted()
as_quoted <- function(x) {
if (is.character(x)) {
if (length(x) > 1) {
x <- paste(x, collapse = "; ")
}
return(parse_exprs(x))
}
if (is.null(x)) {
return(list())
}
if (is_formula(x)) {
return(simplify(x))
}
list(x)
}
# From plyr:::as.quoted.formula
simplify <- function(x) {
if (length(x) == 2 && is_symbol(x[[1]], "~")) {
return(simplify(x[[2]]))
}
if (length(x) < 3) {
return(list(x))
}
op <- x[[1]]; a <- x[[2]]; b <- x[[3]]
if (is_symbol(op, c("+", "*", "~"))) {
c(simplify(a), simplify(b))
} else if (is_symbol(op, "-")) {
c(simplify(a), expr(-!!simplify(b)))
} else {
list(x)
}
}
f_as_facets_list <- function(f) {
lhs <- function(x) if (length(x) == 2) NULL else x[-3]
rhs <- function(x) if (length(x) == 2) x else x[-2]
rows <- f_as_facets(lhs(f))
cols <- f_as_facets(rhs(f))
list(rows, cols)
}
as_facets <- function(x) {
if (is_facets(x)) {
return(x)
}
if (is_formula(x)) {
# Use different formula method because plyr's does not handle the
# environment correctly.
f_as_facets(x)
} else {
vars <- as_quoted(x)
as_quosures(vars, globalenv(), named = TRUE)
}
}
f_as_facets <- function(f) {
if (is.null(f)) {
return(as_quosures(list()))
}
env <- f_env(f) %||% globalenv()
# as.quoted() handles `+` specifications
vars <- as.quoted(f)
# `.` in formulas is ignored
vars <- discard_dots(vars)
as_quosures(vars, env, named = TRUE)
}
discard_dots <- function(x) {
x[!vapply(x, identical, logical(1), as.name("."))]
}
is_facets <- function(x) {
if (!is.list(x)) {
return(FALSE)
}
if (!length(x)) {
return(FALSE)
}
all(vapply(x, is_quosure, logical(1)))
}
# When evaluating variables in a facet specification, we evaluate bare
# variables and expressions slightly differently. Bare variables should
# always succeed, even if the variable doesn't exist in the data frame:
# that makes it possible to repeat data across multiple factors. But
# when evaluating an expression, you want to see any errors. That does
# mean you can't have background data when faceting by an expression,
# but that seems like a reasonable tradeoff.
eval_facets <- function(facets, data, env = globalenv()) {
vars <- compact(lapply(facets, eval_facet, data, env = env))
new_data_frame(tibble::as_tibble(vars))
}
eval_facet <- function(facet, data, env = emptyenv()) {
if (quo_is_symbol(facet)) {
facet <- as.character(quo_get_expr(facet))
if (facet %in% names(data)) {
out <- data[[facet]]
} else {
out <- NULL
}
return(out)
}
eval_tidy(facet, data, env)
}
layout_null <- function() {
# PANEL needs to be a factor to be consistent with other facet types
new_data_frame(list(PANEL = factor(1), ROW = 1, COL = 1, SCALE_X = 1, SCALE_Y = 1))
}
check_layout <- function(x) {
if (all(c("PANEL", "SCALE_X", "SCALE_Y") %in% names(x))) {
return()
}
stop(
"Facet layout has bad format. ",
"It must contain columns 'PANEL', 'SCALE_X', and 'SCALE_Y'",
call. = FALSE
)
}
#' Get the maximal width/length of a list of grobs
#'
#' @param grobs A list of grobs
#' @param value_only Should the return value be a simple numeric vector giving
#' the maximum in cm
#'
#' @return The largest value. measured in cm as a unit object or a numeric
#' vector depending on `value_only`
#'
#' @keywords internal
#' @export
max_height <- function(grobs, value_only = FALSE) {
height <- max(unlist(lapply(grobs, height_cm)))
if (!value_only) height <- unit(height, "cm")
height
}
#' @rdname max_height
#' @export
max_width <- function(grobs, value_only = FALSE) {
width <- max(unlist(lapply(grobs, width_cm)))
if (!value_only) width <- unit(width, "cm")
width
}
#' Find panels in a gtable
#'
#' These functions help detect the placement of panels in a gtable, if they are
#' named with "panel" in the beginning. `find_panel` returns the extend of
#' the panel area, while `panel_cols` and `panel_rows` returns the
#' columns and rows that contains panels respectively.
#'
#' @param table A gtable
#'
#' @return A data.frame with some or all of the columns t(op), r(ight),
#' b(ottom), and l(eft)
#'
#' @keywords internal
#' @export
find_panel <- function(table) {
layout <- table$layout
panels <- layout[grepl("^panel", layout$name), , drop = FALSE]
new_data_frame(list(
t = min(.subset2(panels, "t")),
r = max(.subset2(panels, "r")),
b = max(.subset2(panels, "b")),
l = min(.subset2(panels, "l"))
), n = 1)
}
#' @rdname find_panel
#' @export
panel_cols = function(table) {
panels <- table$layout[grepl("^panel", table$layout$name), , drop = FALSE]
unique(panels[, c('l', 'r')])
}
#' @rdname find_panel
#' @export
panel_rows <- function(table) {
panels <- table$layout[grepl("^panel", table$layout$name), , drop = FALSE]
unique(panels[, c('t', 'b')])
}
#' Take input data and define a mapping between faceting variables and ROW,
#' COL and PANEL keys
#'
#' @param data A list of data.frames, the first being the plot data and the
#' subsequent individual layer data
#' @param env The environment the vars should be evaluated in
#' @param vars A list of quoted symbols matching columns in data
#' @param drop should missing combinations/levels be dropped
#'
#' @return A data.frame with columns for PANEL, ROW, COL, and faceting vars
#'
#' @keywords internal
#' @export
combine_vars <- function(data, env = emptyenv(), vars = NULL, drop = TRUE) {
if (length(vars) == 0) return(new_data_frame())
# For each layer, compute the facet values
values <- compact(lapply(data, eval_facets, facets = vars, env = env))
# Form the base data.frame which contains all combinations of faceting
# variables that appear in the data
has_all <- unlist(lapply(values, length)) == length(vars)
if (!any(has_all)) {
missing <- lapply(values, function(x) setdiff(names(vars), names(x)))
missing_txt <- vapply(missing, var_list, character(1))
name <- c("Plot", paste0("Layer ", seq_len(length(data) - 1)))
stop(
"At least one layer must contain all faceting variables: ",
var_list(names(vars)), ".\n",
paste0("* ", name, " is missing ", missing_txt, collapse = "\n"),
call. = FALSE
)
}
base <- unique(rbind_dfs(values[has_all]))
if (!drop) {
base <- unique_combs(base)
}
# Systematically add on missing combinations
for (value in values[!has_all]) {
if (empty(value)) next;
old <- base[setdiff(names(base), names(value))]
new <- unique(value[intersect(names(base), names(value))])
if (drop) {
new <- unique_combs(new)
}
base <- unique(rbind(base, df.grid(old, new)))
}
if (empty(base)) {
stop("Faceting variables must have at least one value", call. = FALSE)
}
base
}
#' Render panel axes
#'
#' These helpers facilitates generating theme compliant axes when
#' building up the plot.
#'
#' @param x,y A list of ranges as available to the draw_panel method in
#' `Facet` subclasses.
#' @param coord A `Coord` object
#' @param theme A `theme` object
#' @param transpose Should the output be transposed?
#'
#' @return A list with the element "x" and "y" each containing axis
#' specifications for the ranges passed in. Each axis specification is a list
#' with a "top" and "bottom" element for x-axes and "left" and "right" element
#' for y-axis, holding the respective axis grobs. Depending on the content of x
#' and y some of the grobs might be zeroGrobs. If `transpose=TRUE` the
#' content of the x and y elements will be transposed so e.g. all left-axes are
#' collected in a left element as a list of grobs.
#'
#' @keywords internal
#' @export
#'
render_axes <- function(x = NULL, y = NULL, coord, theme, transpose = FALSE) {
axes <- list()
if (!is.null(x)) {
axes$x <- lapply(x, coord$render_axis_h, theme)
}
if (!is.null(y)) {
axes$y <- lapply(y, coord$render_axis_v, theme)
}
if (transpose) {
axes <- list(
x = list(
top = lapply(axes$x, `[[`, "top"),
bottom = lapply(axes$x, `[[`, "bottom")
),
y = list(
left = lapply(axes$y, `[[`, "left"),
right = lapply(axes$y, `[[`, "right")
)
)
}
axes
}
#' Render panel strips
#'
#' All positions are rendered and it is up to the facet to decide which to use
#'
#' @param x,y A data.frame with a column for each variable and a row for each
#' combination to draw
#' @param labeller A labeller function
#' @param theme a `theme` object
#'
#' @return A list with an "x" and a "y" element, each containing a "top" and
#' "bottom" or "left" and "right" element respectively. These contains a list of
#' rendered strips as gtables.
#'
#' @keywords internal
#' @export
render_strips <- function(x = NULL, y = NULL, labeller, theme) {
list(
x = build_strip(x, labeller, theme, TRUE),
y = build_strip(y, labeller, theme, FALSE)
)
}