forked from AIRI-Institute/StyleFeatureEditor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_runners.py
578 lines (470 loc) · 19.8 KB
/
training_runners.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import os
import sys
import json
import wandb
import datetime
import omegaconf
import torch
import numpy as np
import torch.nn.functional as F
from collections import defaultdict
from tqdm.auto import tqdm
from io import BytesIO
from PIL import Image
from time import time
from pathlib import Path
from abc import abstractmethod
from runners.base_runner import BaseRunner
from utils.class_registry import ClassRegistry
from datasets.transforms import transforms_registry
from datasets.datasets import ImageDataset
from datasets.loaders import InfiniteLoader
from training.losses import disc_losses, LossBuilder
from training.optimizers import optimizers
from metrics.metrics import metrics_registry
from training.loggers import Timer, StreamingMeans, TrainigLogger
from utils.common_utils import tensor2im, get_keys
from models.methods import methods_registry
from models.psp.encoders.psp_encoders import ProgressiveStage
from utils.model_utils import toogle_grad
training_runners = ClassRegistry()
FACE_DIRECTIONS = {
"age": [-7, -5, 5, 7, 10],
"fs_makeup": [5, 8, 12],
"afro": [0.03, 0.07],
"angry": [0.06, 0.1],
"purple_hair": [0.07, 0.1, 0.12],
"glasses": [-10, -7],
"face_roundness": [-13, -7, 7, 13],
"rotation": [-5.0, -3.0, -1.0, 1.0, 3.0, 5.0],
"bobcut": [0.07, 0.12, 0.18],
"bowlcut": [0.07, 0.14],
"mohawk": [0.07, 0.10],
"blond hair": [-8, -4, 4, 8],
"fs_smiling": [-6, -3, 3, 6, 9]
}
def get_random_edit():
direction = np.random.choice(list(FACE_DIRECTIONS.keys()))
strenght = np.random.choice(FACE_DIRECTIONS[direction])
return direction, strenght
@training_runners.add_to_registry(name="base_training_runner")
class BaseTrainingRunner(BaseRunner):
def setup(self):
self.start_step = self.config.train.start_step
self._setup_device()
self._setup_experiment_dir()
self._setup_method()
self._setup_logger()
self._setup_metrics()
self._setup_datasets()
start_batch_size = (
self.config.train.bs_used_before_adv_loss
if self.config.train.train_dis
else self.config.model.batch_size
)
self._setup_dataloaders(start_batch_size)
self._setup_latent_editor()
self._setup_optimizers()
self._setup_loss()
def _setup_logger(self):
self.logger = TrainigLogger(self.config)
def _setup_datasets(self):
print("Loading dataset")
transform_dict = transforms_registry[self.config.data.transform]().get_transforms()
self.train_dataset = ImageDataset(
self.config.data.input_train_dir, transform_dict["train"]
)
self.test_dataset = ImageDataset(
self.config.data.input_val_dir, transform_dict["test"]
)
self.paths = self.test_dataset.paths
self.special_dataset = ImageDataset(
self.config.data.special_dir, transform_dict["test"]
)
self.special_paths = self.special_dataset.paths
def _setup_dataloaders(self, batch_size):
self.train_dataloader = InfiniteLoader(
self.train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=self.config.model.workers,
drop_last=True,
is_infinite=True
)
self.test_dataloader = InfiniteLoader(
self.test_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=self.config.model.workers,
is_infinite=False
)
self.special_dataloader = InfiniteLoader(
self.special_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=self.config.model.workers,
is_infinite=False
)
def _setup_optimizers(self):
params = list(self.method.encoder.parameters())
optimizer_args = dict(
self.config.optimizers[self.config.train.encoder_optimizer]
)
optimizer_args["params"] = params
self.encoder_optimizer = optimizers[self.config.train.encoder_optimizer](
**optimizer_args
)
if self.config.model.checkpoint_path != "":
ckpt = torch.load(self.config.model.checkpoint_path, map_location="cpu")
if "encoder_opt" in ckpt.keys():
self.encoder_optimizer.load_state_dict(ckpt["encoder_opt"])
else:
print('WARNING, continuing training without loading encoder optimizer state!')
if self.config.train.train_dis:
params = list(self.method.discriminator.parameters())
optimizer_args = dict(
self.config.optimizers[self.config.train.disc_optimizer]
)
optimizer_args["params"] = params
self.disc_optimizer = optimizers[self.config.train.disc_optimizer](
**optimizer_args
)
if self.config.model.checkpoint_path != "":
if "disc_opt" in ckpt.keys():
self.disc_optimizer.load_state_dict(ckpt["disc_opt"])
else:
print('WARNING, continuing training without loading disc optimizer state!')
def _setup_loss(self):
enc_losses_dict = self.config.encoder_losses
disc_losses_dict = self.config.disc_losses
self.loss_builder = LossBuilder(
enc_losses_dict,
disc_losses_dict,
self.device
)
def _setup_experiment_dir(self):
base_root = Path(__file__).resolve().parent.parent
num = 0
exp_dir = self.config.exp.exp_dir
exp_dir_name = "{}_{}".format(self.config.exp.name, str(num).zfill(3))
exp_path = base_root / exp_dir / exp_dir_name
while True:
if exp_path.exists():
num += 1
exp_dir_name = "{}_{}".format(self.config.exp.name, str(num).zfill(3))
print(exp_path, "already exists: move to", exp_dir_name)
else:
break
exp_path = base_root / exp_dir / exp_dir_name
self.experiment_dir = str(exp_path)
os.makedirs(self.experiment_dir)
print("Experiment directory: {self.experiment_dir}")
with open(os.path.join(self.experiment_dir, "config.yaml"), "w") as f:
omegaconf.OmegaConf.save(config=self.config, f=f.name)
with open(os.path.join(self.experiment_dir, "run_command.sh"), "w") as f:
f.write(" ".join(sys.argv))
f.write("\n")
self.metrics_dir = os.path.join(self.experiment_dir, "metrics")
os.mkdir(self.metrics_dir)
self.inference_results_dir = os.path.join(
self.experiment_dir, "inference_results"
)
os.mkdir(self.inference_results_dir)
def _setup_metrics(self):
metrics_names = self.config.train.val_metrics
self.metrics = []
for metric_name in metrics_names:
metric_args = {}
if hasattr(self.config.metrics, metric_name):
metric_args = getattr(self.config.metrics, metric_name)
self.metrics.append(metrics_registry[metric_name](**metric_args))
def to_train(self):
self.method.train()
def to_eval(self):
self.method.eval()
def run(self):
iter_info = StreamingMeans()
self.to_train()
for self.global_step in range(self.start_step, self.config.train.steps + 1):
with Timer(iter_info, "iter_train"):
loss_dict = self.train_step()
iter_info.update({f"iter_train/{k}": v for k, v in loss_dict.items()})
if self.global_step % self.config.train.val_step == 0 :
with Timer(iter_info, "iter_val"):
val_loss_dict = self.validate()
iter_info.update({f"iter_val/{k}": v for k, v in val_loss_dict.items()})
orig_pics, method_pics, captions = self.inference_special()
self.logger.save_validation_logs(
orig_pics,
method_pics,
captions,
special_paths=self.special_paths
)
if self.global_step % self.config.train.log_step == 0:
self.logger.save_train_logs(iter_info, self.global_step)
iter_info.clear()
if self.global_step % self.config.train.checkpoint_step == 0:
self.save_checkpoint()
def train_step(self):
x = next(self.train_dataloader)
x = x.to(self.device).float()
output = self.forward(x)
enc_loss, loss_dict = self.loss_builder.encoder_loss(output["encoder"])
self.encoder_optimizer.zero_grad()
enc_loss.backward()
self.encoder_optimizer.step()
loss_dict["enc_loss"] = float(enc_loss)
if (
self.config.train.train_dis
and self.global_step >= self.config.train.dis_train_start_step
):
if self.global_step == self.config.train.dis_train_start_step:
print("Start training with discriminator")
if self.train_dataloader.batch_size != self.config.model.batch_size:
print(f"Changing batch size from {self.train_dataloader.batch_size} to {self.config.model.batch_size}")
self._setup_dataloaders(self.config.model.batch_size)
toogle_grad(self.method.discriminator, True)
self.method.discriminator.train()
disc_loss, disc_losses_dict = self.loss_builder.disc_loss(
self.method.discriminator,
output["to_disc"]
)
loss_dict.update(disc_losses_dict)
self.disc_optimizer.zero_grad()
disc_loss.backward()
self.disc_optimizer.step()
toogle_grad(self.method.discriminator, False)
self.method.discriminator.eval()
self.method.latent_avg = self.method.latent_avg.detach()
return loss_dict
def save_checkpoint(self):
save_name = f"iteration_{self.global_step}.pt"
checkpoint_path = os.path.join(self.experiment_dir, save_name)
save_dict = self.get_save_dict()
print(f"Saving checkpoint to {checkpoint_path}")
torch.save(save_dict, checkpoint_path)
options_path = os.path.join(self.experiment_dir, "save_options.json")
save_options = {"start_step": self.global_step + 1}
if self.config.exp.wandb:
save_options.update(self.logger.wandb_logger.wandb_args)
with open(options_path, "w") as f:
json.dump(save_options, f)
def get_save_dict(self):
save_dict = {
"state_dict": self.method.state_dict(),
"encoder_opt": self.encoder_optimizer.state_dict(),
"latent_avg": self.method.latent_avg
}
if self.config.train.train_dis:
save_dict["disc_opt"] = self.disc_optimizer.state_dict()
return save_dict
@torch.inference_mode()
def inference_special(self):
print("Runing inversion for special")
self.validate(special=True)
captions = defaultdict(str)
for metric in self.metrics:
if metric.get_name() == "FID":
continue
from_data_arg = {
"fake_data": self.val_pics_res,
"inp_data": self.val_pics_orig,
"paths": self.special_paths,
}
metric_data, _, _ = metric(
None, None, out_path=None, from_data=from_data_arg
)
for path in self.special_paths:
metric_value = metric_data[os.path.basename(path)]
captions[path] += f"{metric.get_name()}: {metric_value:.3}\n"
return self.val_pics_orig, self.val_pics_res, captions
@torch.inference_mode()
def validate(self, special=False):
if not special:
print("Start validating")
self.to_eval()
self.val_pics_res = []
self.val_pics_orig = []
if not special:
dataloader = self.test_dataloader
paths = self.paths
else:
dataloader = self.special_dataloader
paths = self.special_paths
global_i = 0
for input_batch in tqdm(dataloader):
input_batch = input_batch.to(self.device).float()
result_batch = self._run_on_batch(input_batch)
for i in range(result_batch.shape[0]):
result = tensor2im(result_batch[i])
img = Image.fromarray(np.array(result)).convert("RGB")
memory_tmp = BytesIO()
img.save(memory_tmp, format="jpeg")
img = Image.open(memory_tmp).convert("RGB")
memory_tmp.close()
self.val_pics_res.append(img)
self.val_pics_orig.append(
Image.open(paths[global_i]).convert("RGB")
)
global_i += 1
metrics_dict = {}
if not special:
for metric in self.metrics:
from_data_arg = {
"fake_data": self.val_pics_res,
"inp_data": self.val_pics_orig,
"paths": paths,
}
_, metric_mean, _ = metric(
None, None, out_path=None, from_data=from_data_arg
)
metrics_dict[metric.get_name()] = metric_mean
self.to_train()
return metrics_dict
@abstractmethod
def _run_on_batch(self, inputs):
raise NotImplementedError()
@abstractmethod
def forward(self, x):
raise NotImplementedError()
@training_runners.add_to_registry(name="fse_inverter")
class FSEInverterTrainingRunner(BaseTrainingRunner):
def forward(self, x):
y_hat_inv, w_inv, fused_feat, w_feat = self.method(
x,
return_latents=True,
n_iter=self.global_step
)
y_hat_inv_w, _ = self.method.decoder(
[w_inv],
input_is_latent=True,
is_stylespace=False,
randomize_noise=False
)
y_hat = torch.cat([y_hat_inv, y_hat_inv_w], dim=0)
output = {"encoder": {}, "to_disc": {}}
use_adv_loss = (
self.config.train.train_dis
and self.global_step >= self.config.train.dis_train_start_step
)
output["encoder"]["use_adv_loss"] = use_adv_loss
if use_adv_loss:
output["encoder"]["fake_preds"] = self.method.discriminator(y_hat, None)
output["to_disc"]["y_hat"] = y_hat
output["to_disc"]["x"] = x
output["to_disc"]["step"] = self.global_step
y_hat = self.method.pool(y_hat)
x = self.method.pool(x)
x = torch.cat([x, x], dim=0)
output["encoder"]["x"] = x
output["encoder"]["y_hat"] = y_hat
output["encoder"]["feat_recon"] = fused_feat
output["encoder"]["feat_real"] = w_feat
return output
def _run_on_batch(self, inputs):
result_batch = self.method(inputs)
return result_batch
@training_runners.add_to_registry(name="fse_editor")
class FSEEditorTrainingRunner(BaseTrainingRunner):
def forward(self, x):
# get inversion batch
y_hat_inv, w, fused_feat, w_feat = self.method(x, return_latents=True)
# get editing batch
with torch.no_grad():
# sample X_E as training input and X'_E as training target
d, strenght = get_random_edit()
x_resh = F.interpolate(x, size=(256, 256), mode="bilinear", align_corners=False)
w_e4e = self.method.e4e_encoder(x_resh)
w_e4e = w_e4e + self.method.latent_avg
x_E, fx_e4e = self.method.decoder(
[w_e4e],
input_is_latent=True,
randomize_noise=False,
return_latents=False,
return_features=True
)
edited_w_e4e = self.get_edited_latent(w_e4e, d, [strenght])
if isinstance(edited_w_e4e, tuple):
# stylespace case
y_E, fy_e4e = self.method.decoder(
edited_w_e4e,
is_stylespace=True,
input_is_latent=True,
randomize_noise=False,
return_features=True
)
else:
edited_w_e4e = torch.cat(edited_w_e4e, dim=0)
y_E, fy_e4e = self.method.decoder(
[edited_w_e4e],
is_stylespace=False,
input_is_latent=True,
randomize_noise=False,
return_features=True
)
y_E_256 = F.interpolate(y_E, size=(256, 256), mode="bilinear", align_corners=False) # X'_E
x_E_256 = F.interpolate(x_E, size=(256, 256), mode="bilinear", align_corners=False) # X_E
delta = fx_e4e[9] - fy_e4e[9]
if d in self.config.train.disc_edits:
x_E_256 = torch.cat([x_E_256, x_resh], dim=0)
delta = torch.cat([delta, delta], dim=0)
w_x_E, x_E_predicted_feats = self.method.inverter.fs_backbone(x_E_256)
w_x_E = w_x_E + self.method.latent_avg
w_x_E_edited = self.get_edited_latent(w_x_E, d, [strenght])
is_stylespace = isinstance(w_x_E_edited, tuple)
if not is_stylespace:
w_x_E_edited = [torch.cat(w_x_E_edited, dim=0)]
_, x_E_w_feats = self.method.decoder(
[w_x_E],
input_is_latent=True,
return_features=True,
is_stylespace=False,
randomize_noise=False,
early_stop=64
)
x_E_w_feat = x_E_w_feats[9]
to_fuser = torch.cat([x_E_predicted_feats, x_E_w_feat], dim=1)
x_E_fused_feat = self.method.inverter.fuser(to_fuser)
to_feature_editor = torch.cat([x_E_fused_feat, delta], dim=1)
x_E_edited_feat = self.method.encoder(to_feature_editor)
x_E_edited_feats = [None] * 9 + [x_E_edited_feat] + [None] * (17 - 9)
y_hat_edit, _ = self.method.decoder(
w_x_E_edited,
input_is_latent=True,
new_features=x_E_edited_feats,
feature_scale=1.0,
is_stylespace=is_stylespace,
randomize_noise=False
)
bs = x_resh.size(0)
output = {"encoder": {}, "to_disc": {}}
use_adv_loss = (
self.config.train.train_dis
and self.global_step >= self.config.train.dis_train_start_step
)
output["encoder"]["use_adv_loss"] = use_adv_loss
if use_adv_loss:
if x_E_256.size(0) > x_resh.size(0):
assert y_hat_edit.size(0) == bs * 2
output["encoder"]["fake_preds"] = self.method.discriminator(
torch.cat([y_hat_inv, y_hat_edit[bs:]], dim=0),
None
)
else:
output["encoder"]["fake_preds"] = self.method.discriminator(y_hat_inv, None)
output["to_disc"]["y_hat"] = y_hat_inv
output["to_disc"]["x"] = x
output["to_disc"]["step"] = self.global_step
if x_E_256.size(0) > x_resh.size(0):
assert y_hat_edit.size(0) == bs * 2
y_hat_edit = y_hat_edit[:bs]
x = torch.cat([x, y_E], dim=0)
y_hat = torch.cat([y_hat_inv, y_hat_edit])
y_hat = self.method.pool(y_hat)
x = self.method.pool(x)
output["encoder"]["x"] = x
output["encoder"]["y_hat"] = y_hat
return output
def _run_on_batch(self, inputs):
result_batch = self.method(inputs)
return result_batch