forked from AIRI-Institute/StyleFeatureEditor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon_utils.py
48 lines (35 loc) · 1.1 KB
/
common_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import random
from torch.nn import functional as F
from PIL import Image
class AlignerCantFindFaceError(Exception):
pass
class MaskerCantFindFaceError(Exception):
pass
def tensor2im(var):
var = var.cpu().detach().transpose(0, 2).transpose(0, 1).numpy()
var = (var + 1) / 2
var[var < 0] = 0
var[var > 1] = 1
var = var * 255
return Image.fromarray(var.astype("uint8"))
def tensor2im_no_tfm(var):
var = var.cpu().detach().transpose(0, 2).transpose(0, 1).numpy()
var = var * 255
return Image.fromarray(var.astype("uint8"))
def printer(obj, tabs=0):
for (key, value) in obj.items():
try:
_ = value.items()
print(" " * tabs + str(key) + ":")
printer(value, tabs + 4)
except:
print(f" " * tabs + str(key) + " : " + str(value))
def get_keys(d, name, key="state_dict"):
if key in d:
d = d[key]
d_filt = {k[len(name) + 1 :]: v for k, v in d.items() if k[: len(name) + 1] == name + '.'}
return d_filt
def setup_seed(seed):
random.seed(seed)
torch.random.manual_seed(seed)