forked from yxgeee/FD-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
264 lines (227 loc) · 11.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os,sys
import itertools
import numpy as np
import math
import random
import copy
from collections import OrderedDict
import torch
from torch.autograd import Variable
from torch.nn import functional as F
import fdgan.utils.util as util
from fdgan.networks import get_norm_layer, init_weights, CustomPoseGenerator, NLayerDiscriminator, \
remove_module_key, set_bn_fix, get_scheduler, print_network
from fdgan.losses import GANLoss
from reid.models import create
from reid.models.embedding import EltwiseSubEmbed
from reid.models.multi_branch import SiameseNet
class FDGANModel(object):
def __init__(self, opt):
self.opt = opt
self.save_dir = os.path.join(opt.checkpoints, opt.name)
self.norm_layer = get_norm_layer(norm_type=opt.norm)
self._init_models()
self._init_losses()
self._init_optimizers()
print('---------- Networks initialized -------------')
print_network(self.net_E)
print_network(self.net_G)
print_network(self.net_Di)
print_network(self.net_Dp)
print('-----------------------------------------------')
def _init_models(self):
self.net_G = CustomPoseGenerator(self.opt.pose_feature_size, 2048, self.opt.noise_feature_size,
dropout=self.opt.drop, norm_layer=self.norm_layer, fuse_mode=self.opt.fuse_mode, connect_layers=self.opt.connect_layers)
e_base_model = create(self.opt.arch, cut_at_pooling=True)
e_embed_model = EltwiseSubEmbed(use_batch_norm=True, use_classifier=True, num_features=2048, num_classes=2)
self.net_E = SiameseNet(e_base_model, e_embed_model)
di_base_model = create(self.opt.arch, cut_at_pooling=True)
di_embed_model = EltwiseSubEmbed(use_batch_norm=True, use_classifier=True, num_features=2048, num_classes=1)
self.net_Di = SiameseNet(di_base_model, di_embed_model)
self.net_Dp = NLayerDiscriminator(3+18, norm_layer=self.norm_layer)
if self.opt.stage==1:
init_weights(self.net_G)
init_weights(self.net_Dp)
state_dict = remove_module_key(torch.load(self.opt.netE_pretrain))
self.net_E.load_state_dict(state_dict)
state_dict['embed_model.classifier.weight'] = state_dict['embed_model.classifier.weight'][1]
state_dict['embed_model.classifier.bias'] = torch.FloatTensor([state_dict['embed_model.classifier.bias'][1]])
self.net_Di.load_state_dict(state_dict)
elif self.opt.stage==2:
self._load_state_dict(self.net_E, self.opt.netE_pretrain)
self._load_state_dict(self.net_G, self.opt.netG_pretrain)
self._load_state_dict(self.net_Di, self.opt.netDi_pretrain)
self._load_state_dict(self.net_Dp, self.opt.netDp_pretrain)
else:
assert('unknown training stage')
self.net_E = torch.nn.DataParallel(self.net_E).cuda()
self.net_G = torch.nn.DataParallel(self.net_G).cuda()
self.net_Di = torch.nn.DataParallel(self.net_Di).cuda()
self.net_Dp = torch.nn.DataParallel(self.net_Dp).cuda()
def reset_model_status(self):
if self.opt.stage==1:
self.net_G.train()
self.net_Dp.train()
self.net_E.eval()
self.net_Di.train()
self.net_Di.apply(set_bn_fix)
elif self.opt.stage==2:
self.net_E.train()
self.net_G.train()
self.net_Di.train()
self.net_Dp.train()
self.net_E.apply(set_bn_fix)
self.net_Di.apply(set_bn_fix)
def _load_state_dict(self, net, path):
state_dict = remove_module_key(torch.load(path))
net.load_state_dict(state_dict)
def _init_losses(self):
if self.opt.smooth_label:
self.criterionGAN_D = GANLoss(smooth=True).cuda()
self.rand_list = [True] * 1 + [False] * 10000
else:
self.criterionGAN_D = GANLoss(smooth=False).cuda()
self.rand_list = [False]
self.criterionGAN_G = GANLoss(smooth=False).cuda()
def _init_optimizers(self):
if self.opt.stage==1:
self.optimizer_G = torch.optim.Adam(self.net_G.parameters(),
lr=self.opt.lr*0.1, betas=(0.5, 0.999))
self.optimizer_Di = torch.optim.SGD(self.net_Di.parameters(),
lr=self.opt.lr*0.01, momentum=0.9, weight_decay=1e-4)
self.optimizer_Dp = torch.optim.SGD(self.net_Dp.parameters(),
lr=self.opt.lr, momentum=0.9, weight_decay=1e-4)
elif self.opt.stage==2:
param_groups = [{'params': self.net_E.module.base_model.parameters(), 'lr_mult': 0.1},
{'params': self.net_E.module.embed_model.parameters(), 'lr_mult': 1.0},
{'params': self.net_G.parameters(), 'lr_mult': 0.1}]
self.optimizer_G = torch.optim.Adam(param_groups,
lr=self.opt.lr*0.1, betas=(0.5, 0.999))
self.optimizer_Di = torch.optim.SGD(self.net_Di.parameters(),
lr=self.opt.lr, momentum=0.9, weight_decay=1e-4)
self.optimizer_Dp = torch.optim.SGD(self.net_Dp.parameters(),
lr=self.opt.lr, momentum=0.9, weight_decay=1e-4)
self.schedulers = []
self.optimizers = []
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_Di)
self.optimizers.append(self.optimizer_Dp)
for optimizer in self.optimizers:
self.schedulers.append(get_scheduler(optimizer, self.opt))
def set_input(self, input):
input1, input2 = input
labels = (input1['pid']==input2['pid']).long()
noise = torch.randn(labels.size(0), self.opt.noise_feature_size)
# keep the same pose map for persons with the same identity
mask = labels.view(-1,1,1,1).expand_as(input1['posemap'])
input2['posemap'] = input1['posemap']*mask.float() + input2['posemap']*(1-mask.float())
mask = labels.view(-1,1,1,1).expand_as(input1['target'])
input2['target'] = input1['target']*mask.float() + input2['target']*(1-mask.float())
origin = torch.cat([input1['origin'], input2['origin']])
target = torch.cat([input1['target'], input2['target']])
posemap = torch.cat([input1['posemap'], input2['posemap']])
noise = torch.cat((noise, noise))
self.origin = origin.cuda()
self.target = target.cuda()
self.posemap = posemap.cuda()
self.labels = labels.cuda()
self.noise = noise.cuda()
def forward(self):
A = Variable(self.origin)
B_map = Variable(self.posemap)
z = Variable(self.noise)
bs = A.size(0)
A_id1, A_id2, self.id_score = self.net_E(A[:bs//2], A[bs//2:])
A_id = torch.cat((A_id1, A_id2))
self.fake = self.net_G(B_map, A_id.view(A_id.size(0), A_id.size(1), 1, 1), z.view(z.size(0), z.size(1), 1, 1))
def backward_Dp(self):
real_pose = torch.cat((Variable(self.posemap), Variable(self.target)),dim=1)
fake_pose = torch.cat((Variable(self.posemap), self.fake.detach()),dim=1)
pred_real = self.net_Dp(real_pose)
pred_fake = self.net_Dp(fake_pose)
if random.choice(self.rand_list):
loss_D_real = self.criterionGAN_D(pred_fake, True)
loss_D_fake = self.criterionGAN_D(pred_real, False)
else:
loss_D_real = self.criterionGAN_D(pred_real, True)
loss_D_fake = self.criterionGAN_D(pred_fake, False)
loss_D = (loss_D_real + loss_D_fake) * 0.5
loss_D.backward()
self.loss_Dp = loss_D.data[0]
def backward_Di(self):
_, _, pred_real = self.net_Di(Variable(self.origin), Variable(self.target))
_, _, pred_fake = self.net_Di(Variable(self.origin), self.fake.detach())
if random.choice(self.rand_list):
loss_D_real = self.criterionGAN_D(pred_fake, True)
loss_D_fake = self.criterionGAN_D(pred_real, False)
else:
loss_D_real = self.criterionGAN_D(pred_real, True)
loss_D_fake = self.criterionGAN_D(pred_fake, False)
loss_D = (loss_D_real + loss_D_fake) * 0.5
loss_D.backward()
self.loss_Di = loss_D.data[0]
def backward_G(self):
loss_v = F.cross_entropy(self.id_score, Variable(self.labels).view(-1))
loss_r = F.l1_loss(self.fake, Variable(self.target))
fake_1 = self.fake[:self.fake.size(0)//2]
fake_2 = self.fake[self.fake.size(0)//2:]
loss_sp = F.l1_loss(fake_1[self.labels.view(self.labels.size(0),1,1,1).expand_as(fake_1)==1],
fake_2[self.labels.view(self.labels.size(0),1,1,1).expand_as(fake_1)==1])
_, _, pred_fake_Di = self.net_Di(Variable(self.origin), self.fake)
pred_fake_Dp = self.net_Dp(torch.cat((Variable(self.posemap),self.fake),dim=1))
loss_G_GAN_Di = self.criterionGAN_G(pred_fake_Di, True)
loss_G_GAN_Dp = self.criterionGAN_G(pred_fake_Dp, True)
loss_G = loss_G_GAN_Di + loss_G_GAN_Dp + \
loss_r * self.opt.lambda_recon + \
loss_v * self.opt.lambda_veri + \
loss_sp * self.opt.lambda_sp
loss_G.backward()
del self.id_score
self.loss_G = loss_G.data[0]
self.loss_v = loss_v.data[0]
self.loss_sp = loss_sp.data[0]
self.loss_r = loss_r.data[0]
self.loss_G_GAN_Di = loss_G_GAN_Di.data[0]
self.loss_G_GAN_Dp = loss_G_GAN_Dp.data[0]
self.fake = self.fake.data
def optimize_parameters(self):
self.forward()
self.optimizer_Di.zero_grad()
self.backward_Di()
self.optimizer_Di.step()
self.optimizer_Dp.zero_grad()
self.backward_Dp()
self.optimizer_Dp.step()
self.optimizer_G.zero_grad()
self.backward_G()
self.optimizer_G.step()
def get_current_errors(self):
return OrderedDict([('G_v', self.loss_v),
('G_r', self.loss_r),
('G_sp', self.loss_sp),
('G_gan_Di', self.loss_G_GAN_Di),
('G_gan_Dp', self.loss_G_GAN_Dp),
('D_i', self.loss_Di),
('D_p', self.loss_Dp)
])
def get_current_visuals(self):
input = util.tensor2im(self.origin)
target = util.tensor2im(self.target)
fake = util.tensor2im(self.fake)
map = self.posemap.sum(1)
map[map>1]=1
map = util.tensor2im(torch.unsqueeze(map,1))
return OrderedDict([('input', input), ('posemap', map), ('fake', fake), ('target', target)])
def save(self, epoch):
self.save_network(self.net_E, 'E', epoch)
self.save_network(self.net_G, 'G', epoch)
self.save_network(self.net_Di, 'Di', epoch)
self.save_network(self.net_Dp, 'Dp', epoch)
def save_network(self, network, network_label, epoch_label):
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
save_path = os.path.join(self.save_dir, save_filename)
torch.save(network.state_dict(), save_path)
def update_learning_rate(self):
for scheduler in self.schedulers:
scheduler.step()
lr = self.optimizers[0].param_groups[0]['lr']