-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path120.cpp
38 lines (38 loc) · 1.69 KB
/
120.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
//自顶向下
//状态转换方程:f(x,y) = triangle[x][y] + min{f(x+1,y) + f(x+1,y+1)}
/*class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
vector<vector<int>> table;
for (int i = 0; i < triangle.size(); i++) {//初始化table空间复杂度为O(n+n-1+n-2+...1)n为深度
table.push_back(vector<int>(triangle[i].size(), INT_MIN));
}
return helper(triangle, table, 0, 0);
}
int helper(vector<vector<int>> &triangle, vector<vector<int>> &table, int x_index, int y_index) {
if (x_index == triangle.size() - 1) {
return table[x_index][y_index] = triangle[x_index][y_index];
}
if (table[x_index][y_index] != INT_MIN) {
return table[x_index][y_index];
} else {
return table[x_index][y_index] = triangle[x_index][y_index] +
std::min(helper(triangle, table, x_index + 1, y_index), helper(triangle, table, x_index + 1, y_index + 1));
}
}
};*/
//自底向上,空间复杂度为O(n),n为深度
//从底端考虑每层第j个元素到底层的最短距离为下一层第j个元素与第j+1个元素离底层最短距离更小的那个加上该层第j个元素的值,以此类推,每层会少一个table[尾部]
//画图更好理解
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
vector<int> table(triangle.back());//最底层元素的数量
for (int i = triangle.size() - 2; i >= 0; i--) {//从倒数第二层开始
for (int j = 0; j < triangle[i].size(); j++) {
table[j] = triangle[i][j] + std::min(table[j], table[j+1]);
}
}
return table[0];
}
};