forked from liuwei16/CSP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_caltech.py
86 lines (76 loc) · 2.8 KB
/
test_caltech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from __future__ import division
import os
import time
import cPickle
from keras.layers import Input
from keras.models import Model
from keras_csp import config, bbox_process
from keras_csp.utilsfunc import *
from keras_csp import resnet50 as nn
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
C = config.Config()
C.offset = True
cache_path = 'data/cache/caltech/test'
with open(cache_path, 'rb') as fid:
val_data = cPickle.load(fid)
num_imgs = len(val_data)
print 'num of val samples: {}'.format(num_imgs)
C.size_test = (480, 640)
input_shape_img = (C.size_test[0], C.size_test[1], 3)
img_input = Input(shape=input_shape_img)
# define the network prediction
preds = nn.nn_p3p4p5(img_input, offset=C.offset, num_scale=C.num_scale, trainable=True)
model = Model(img_input, preds)
if C.offset:
w_path = 'output/valmodels/caltech/%s/off' % (C.scale)
out_path = 'output/valresults/caltech/%s/off' % (C.scale)
else:
w_path = 'output/valmodels/caltech/%s/nooff' % (C.scale)
out_path = 'output/valresults/caltech/%s/nooff' % (C.scale)
if not os.path.exists(out_path):
os.makedirs(out_path)
files = sorted(os.listdir(w_path))
for w_ind in range(51, 121):
for f in files:
if f.split('_')[0] == 'net' and int(f.split('_')[1][1:]) == w_ind:
cur_file = f
break
weight1 = os.path.join(w_path, cur_file)
print 'load weights from {}'.format(weight1)
model.load_weights(weight1, by_name=True)
res_path = os.path.join(out_path, '%03d'%int(str(w_ind)))
print res_path
if not os.path.exists(res_path):
os.mkdir(res_path)
for st in range(6, 11):
set_path = os.path.join(res_path, 'set' + '%02d' % st)
if not os.path.exists(set_path):
os.mkdir(set_path)
start_time = time.time()
for f in range(num_imgs):
filepath = val_data[f]['filepath']
filepath_next = val_data[f + 1]['filepath'] if f < num_imgs - 1 else val_data[f]['filepath']
set = filepath.split('/')[-1].split('_')[0]
video = filepath.split('/')[-1].split('_')[1]
frame_number = int(filepath.split('/')[-1].split('_')[2][1:6]) + 1
frame_number_next = int(filepath_next.split('/')[-1].split('_')[2][1:6]) + 1
set_path = os.path.join(res_path, set)
video_path = os.path.join(set_path, video + '.txt')
if os.path.exists(video_path):
continue
if frame_number == 30:
res_all = []
img = cv2.imread(filepath)
x_rcnn = format_img(img, C)
Y = model.predict(x_rcnn)
if C.offset:
boxes = bbox_process.parse_det_offset(Y, C, score=0.01,down=4)
else:
boxes = bbox_process.parse_det(Y, C, score=0.01, down=4, scale=C.scale)
if len(boxes)>0:
f_res = np.repeat(frame_number, len(boxes), axis=0).reshape((-1, 1))
boxes[:, [2, 3]] -= boxes[:, [0, 1]]
res_all += np.concatenate((f_res, boxes), axis=-1).tolist()
if frame_number_next == 30 or f == num_imgs - 1:
np.savetxt(video_path, np.array(res_all), fmt='%6f')
print time.time() - start_time