forked from matterport/lsm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
648 lines (543 loc) · 22.5 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
import tensorflow as tf
import tensorflow.contrib.slim as slim
import logging
from convlstm import ConvGRUCell, ConvLSTMCell
logger = logging.getLogger('mview3d.' + __name__)
def get_bias(shape, name='bias'):
return tf.get_variable(
name, shape=shape, initializer=tf.constant_initializer(0.0))
def get_weights(shape, name='weights'):
return tf.get_variable(
name, shape=shape, initializer=slim.initializers.xavier_initializer())
def convgru(grid, kernel=[3, 3, 3], filters=32):
bs, im_bs, h, w, d, ch = grid.get_shape().as_list()
conv_gru = ConvGRUCell(
shape=[h, w, d],
initializer=slim.initializers.xavier_initializer(),
kernel=kernel,
filters=filters)
seq_length = [im_bs for _ in range(bs)]
outputs, states = tf.nn.dynamic_rnn(
conv_gru,
grid,
parallel_iterations=64,
sequence_length=seq_length,
dtype=tf.float32,
time_major=False)
return outputs, states
def convlstm(grid, kernel=[3, 3, 3], filters=32):
bs, im_bs, h, w, d, ch = grid.get_shape().as_list()
conv_lstm = ConvLSTMCell(
shape=[h, w, d],
initializer=slim.initializers.xavier_initializer(),
kernel=kernel,
filters=filters)
seq_length = [im_bs for _ in range(bs)]
outputs, states = tf.nn.dynamic_rnn(
conv_lstm,
grid,
parallel_iterations=64,
sequence_length=seq_length,
dtype=tf.float32,
time_major=False)
return outputs, states
conv_rnns = {'gru': convgru, 'lstm': convlstm}
def instance_norm(x):
epsilon = 1e-5
x_shape = x.get_shape().as_list()
if len(x_shape) == 4:
axis = [1, 2]
elif len(x_shape) == 5:
axis = [1, 2, 3]
else:
logger.error(
'Instance norm not supported for tensor rank %d' % len(x_shape))
with tf.variable_scope('InstanceNorm'):
mean, var = tf.nn.moments(x, axis, keep_dims=True)
beta = get_bias([x_shape[-1]])
return tf.nn.batch_normalization(
x, mean, var, offset=beta, scale=None, variance_epsilon=epsilon)
def deconv3d(name,
X,
fsize,
ch,
stride=2,
norm=None,
padding="SAME",
activation=tf.nn.relu,
mode="TRAIN"):
bs, h, w, d, in_ch = tf_static_shape(X)
filt_shape = [fsize, fsize, fsize, ch, in_ch]
out_shape = [bs, h * stride, w * stride, d * stride, ch]
stride = [1, stride, stride, stride, 1]
with tf.variable_scope(name):
if activation is not None:
X = activation(X)
params = get_weights(filt_shape)
X = tf.nn.conv3d_transpose(X, params, out_shape, stride, padding)
if norm is None:
bias_dim = [filt_shape[-2]]
X = tf.nn.bias_add(X, get_bias(bias_dim))
elif norm == 'BN':
is_training = (True if mode == "TRAIN" else False)
X = slim.batch_norm(
X, is_training=is_training, updates_collections=None)
elif norm == 'IN':
X = instance_norm(X)
else:
logger.error('Invalid normalization! Choose from {None, BN, IN}')
return X
def conv3d(name,
X,
fsize,
ch,
stride=2,
norm=None,
padding="SAME",
activation=tf.nn.relu,
mode="TRAIN"):
bs, h, w, d, in_ch = tf_static_shape(X)
filt_shape = [fsize, fsize, fsize, in_ch, ch]
stride = [1, stride, stride, stride, 1]
with tf.variable_scope(name):
if activation is not None:
X = activation(X)
params = get_weights(filt_shape)
X = tf.nn.conv3d(X, params, stride, padding)
if norm is None:
bias_dim = [filt_shape[-1]]
X = tf.nn.bias_add(X, get_bias(bias_dim))
elif norm == 'BN':
is_training = (True if mode == "TRAIN" else False)
X = slim.batch_norm(
X, is_training=is_training, updates_collections=None)
elif norm == 'IN':
X = instance_norm(X)
else:
logger.error('Invalid normalization! Choose from {None, BN, IN}')
return X
def separable_conv2d(name,
X,
fsize,
ch_mult,
out_ch,
stride=2,
norm=None,
padding="SAME",
act=tf.nn.relu,
mode="TRAIN"):
bs, h, w, in_ch = tf_static_shape(X)
depth_filt_shape = [fsize, fsize, in_ch, ch_mult]
point_filt_shape = [1, 1, in_ch * ch_mult, out_ch]
stride = [1, stride, stride, 1]
with tf.variable_scope(name):
if act is not None:
X = act(X)
params_depth = get_weights(depth_filt_shape, name='depth_weights')
params_pt = get_weights(point_filt_shape, name='pt_weights')
X = tf.nn.depthwise_conv2d(X, params_depth, stride, padding)
X = tf.nn.conv2d(X, params_pt, stride, padding)
if norm is None:
bias_dim = [out_ch]
X = tf.nn.bias_add(X, get_bias(bias_dim))
elif norm == 'BN':
is_training = (True if mode == "TRAIN" else False)
X = slim.batch_norm(
X, is_training=is_training, updates_collections=None)
elif norm == 'IN':
X = instance_norm(X)
else:
logger.error('Invalid normalization! Choose from {None, BN, IN}')
return X
def conv2d(name,
X,
fsize,
ch,
stride=2,
norm=None,
padding="SAME",
act=tf.nn.relu,
mode="TRAIN"):
bs, h, w, in_ch = tf_static_shape(X)
filt_shape = [fsize, fsize, in_ch, ch]
stride = [1, stride, stride, 1]
with tf.variable_scope(name):
if act is not None:
X = act(X)
params = get_weights(filt_shape)
X = tf.nn.conv2d(X, params, stride, padding)
if norm is None:
bias_dim = [filt_shape[-1]]
X = tf.nn.bias_add(X, get_bias(bias_dim))
elif norm == 'BN':
is_training = (True if mode == "TRAIN" else False)
X = slim.batch_norm(
X, is_training=is_training, updates_collections=None)
elif norm == 'IN':
X = instance_norm(X)
else:
logger.error('Invalid normalization! Choose from {None, BN, IN}')
return X
def resize_conv2d(name,
X,
fsize,
ch,
stride=2,
norm=None,
padding="SAME",
act=tf.nn.relu,
mode="TRAIN"):
bs, h, w, in_ch = tf_static_shape(X)
filt_shape = [fsize, fsize, in_ch, ch]
new_h, new_w = h * stride, w * stride
conv_stride = [1, 1, 1, 1]
with tf.variable_scope(name):
if act is not None:
X = act(X)
X = tf.image.resize_nearest_neighbor(X, [new_h, new_w])
params = get_weights(filt_shape)
X = tf.nn.conv2d(X, params, conv_stride, padding)
if norm is None:
bias_dim = [ch]
X = tf.nn.bias_add(X, get_bias(bias_dim))
elif norm == 'BN':
is_training = (True if mode == "TRAIN" else False)
X = slim.batch_norm(
X, is_training=is_training, updates_collections=None)
elif norm == 'IN':
X = instance_norm(X)
else:
logger.error('Invalid normalization! Choose from {None, BN, IN}')
return X
def deconv2d(name,
X,
fsize,
ch,
stride=2,
norm=None,
padding="SAME",
act=tf.nn.relu,
mode="TRAIN"):
bs, h, w, in_ch = tf_static_shape(X)
filt_shape = [fsize, fsize, ch, in_ch]
out_shape = [bs, h * stride, w * stride, ch]
stride = [1, stride, stride, 1]
with tf.variable_scope(name):
if act is not None:
X = act(X)
params = get_weights(filt_shape)
X = tf.nn.conv2d_transpose(X, params, out_shape, stride, padding)
if norm is None:
bias_dim = [filt_shape[-2]]
X = tf.nn.bias_add(X, get_bias(bias_dim))
elif norm == 'BN':
is_training = (True if mode == "TRAIN" else False)
X = slim.batch_norm(
X, is_training=is_training, updates_collections=None)
elif norm == 'IN':
X = instance_norm(X)
else:
logger.error('Invalid normalization! Choose from {None, BN, IN}')
return X
def residual(x, channels=32, norm="IN", scope='res'):
with tf.variable_scope(scope):
res_x = conv2d(
scope + '_1', x, 3, channels, stride=1, norm=norm, act=None)
res_x = conv2d(scope + '_2', res_x, 3, channels, stride=1, norm=norm)
x_skip = conv2d(scope + '_s', x, 1, channels, stride=1, norm=norm)
return res_x + x_skip
def fully_connected(name, X, dim, activation=tf.nn.relu):
bs = X.get_shape().as_list()[0]
with tf.variable_scope(name):
if activation is not None:
X = activation(X)
X = tf.reshape(X, [bs, -1])
wshape = (X.get_shape().as_list()[-1], dim)
params = get_weights(wshape)
X = tf.matmul(X, params)
X = tf.nn.bias_add(X, get_bias(dim))
return X
def nearest3(grid, idx, clip=False):
with tf.variable_scope('NearestInterp'):
_, h, w, d, f = grid.get_shape().as_list()
x, y, z = idx[:, 1], idx[:, 2], idx[:, 3]
g_val = tf.gather_nd(grid, tf.cast(tf.round(idx), 'int32'))
if clip:
x_inv = tf.logical_or(x < 0, x > h - 1)
y_inv = tf.logical_or(y < 0, y > w - 1)
z_inv = tf.logical_or(z < 0, x > d - 1)
valid_idx = 1 - \
tf.to_float(tf.logical_or(tf.logical_or(x_inv, y_inv), z_inv))
g_val = g_val * valid_idx[tf.newaxis, ...]
return g_val
def proj_slice(net,
grid,
K,
R,
proj_size=224,
samples=64,
min_z=1.0,
max_z=3.0):
'''grid = nv grids, R = nv x nr rotation matrices, '''
''' R = (bs, im, 3, 4), K = (bs, im, 3, 3), grid = (bs, im, h, w, d, ch)'''
rsz_factor = float(proj_size) / net.im_h
K = K * rsz_factor
K_shape = tf_static_shape(K)
bs, im_bs, h, w, d, ch = tf_static_shape(grid)
npix = proj_size**2
with tf.variable_scope('ProjSlice'):
# Setup dimensions
with tf.name_scope('PixelCenters'):
# Setup image grids to unproject along rays
im_range = tf.range(0.5, proj_size, 1)
im_grid = tf.stack(tf.meshgrid(im_range, im_range))
rs_grid = tf.reshape(im_grid, [2, -1])
# Append rsz_factor to ensure that
rs_grid = tf.concat(
[rs_grid, tf.ones((1, npix)) * rsz_factor], axis=0)
rs_grid = tf.reshape(rs_grid, [1, 1, 3, npix])
rs_grid = tf.tile(rs_grid, [K_shape[0], K_shape[1], 1, 1])
with tf.name_scope('Im2Cam'):
# Compute Xc - points in camera frame
Xc = tf.matrix_triangular_solve(
K, rs_grid, lower=False, name='KinvX')
# Define z values of samples along ray
z_samples = tf.linspace(min_z, max_z, samples)
# Transform Xc to Xw using transpose of rotation matrix
Xc = repeat_tensor(Xc, samples, rep_dim=2)
Xc = Xc * z_samples[tf.newaxis, tf.newaxis, :, tf.newaxis,
tf.newaxis]
Xc = tf.concat(
[Xc, tf.ones([K_shape[0], K_shape[1], samples, 1, npix])],
axis=-2)
with tf.name_scope('Cam2World'):
# Construct [R^{T}|-R^{T}t]
Rt = tf.matrix_transpose(R[:, :, :, :3])
tr = tf.expand_dims(R[:, :, :, 3], axis=-1)
R_c2w = tf.concat([Rt, -tf.matmul(Rt, tr)], axis=3)
R_c2w = repeat_tensor(R_c2w, samples, rep_dim=2)
Xw = tf.matmul(R_c2w, Xc)
# Transform world points to grid locations to sample from
Xw = ((Xw - net.vmin) / (net.vmax - net.vmin)) * net.nvox
# bs, K_shape[1], samples, npix, 3
Xw = tf.transpose(Xw, [0, 1, 2, 4, 3])
Xw = repeat_tensor(Xw, im_bs, rep_dim=1)
with tf.name_scope('Interp'):
sample_grid = collapse_dims(grid)
sample_locs = collapse_dims(Xw)
lshape = tf_static_shape(sample_locs)
vox_idx = tf.range(lshape[0])
vox_idx = repeat_tensor(vox_idx, lshape[1], rep_dim=1)
vox_idx = tf.reshape(vox_idx, [-1, 1])
vox_idx = repeat_tensor(vox_idx, samples * npix, rep_dim=1)
vox_idx = tf.reshape(vox_idx, [-1, 1])
sample_idx = tf.concat(
[tf.to_float(vox_idx),
tf.reshape(sample_locs, [-1, 3])],
axis=1)
g_val = nearest3(sample_grid, sample_idx)
g_val = tf.reshape(g_val, [
bs, im_bs, K_shape[1], samples, proj_size, proj_size, -1
])
ray_slices = tf.transpose(g_val, [0, 1, 2, 4, 5, 6, 3])
return ray_slices, z_samples
def proj_splat(net, feats, K, Rcam):
KRcam = tf.matmul(K, Rcam)
with tf.variable_scope('ProjSplat'):
nR, fh, fw, fdim = tf_static_shape(feats)
rsz_h = float(fh) / net.im_h
rsz_w = float(fw) / net.im_w
# Create voxel grid
with tf.name_scope('GridCenters'):
grid_range = tf.range(net.vmin + net.vsize / 2.0, net.vmax,
net.vsize)
net.grid = tf.stack(
tf.meshgrid(grid_range, grid_range, grid_range))
net.rs_grid = tf.reshape(net.grid, [3, -1])
nV = tf_static_shape(net.rs_grid)[1]
net.rs_grid = tf.concat([net.rs_grid, tf.ones([1, nV])], axis=0)
# Project grid
with tf.name_scope('World2Cam'):
im_p = tf.matmul(tf.reshape(KRcam, [-1, 4]), net.rs_grid)
im_x, im_y, im_z = im_p[::3, :], im_p[1::3, :], im_p[2::3, :]
im_x = (im_x / im_z) * rsz_w
im_y = (im_y / im_z) * rsz_h
net.im_p, net.im_x, net.im_y, net.im_z = im_p, im_x, im_y, im_z
# Bilinear interpolation
with tf.name_scope('BilinearInterp'):
im_x = tf.clip_by_value(im_x, 0, fw - 1)
im_y = tf.clip_by_value(im_y, 0, fh - 1)
im_x0 = tf.cast(tf.floor(im_x), 'int32')
im_x1 = im_x0 + 1
im_y0 = tf.cast(tf.floor(im_y), 'int32')
im_y1 = im_y0 + 1
im_x0_f, im_x1_f = tf.to_float(im_x0), tf.to_float(im_x1)
im_y0_f, im_y1_f = tf.to_float(im_y0), tf.to_float(im_y1)
ind_grid = tf.range(0, nR)
ind_grid = tf.expand_dims(ind_grid, 1)
im_ind = tf.tile(ind_grid, [1, nV])
def _get_gather_inds(x, y):
return tf.reshape(tf.stack([im_ind, y, x], axis=2), [-1, 3])
# Gather values
Ia = tf.gather_nd(feats, _get_gather_inds(im_x0, im_y0))
Ib = tf.gather_nd(feats, _get_gather_inds(im_x0, im_y1))
Ic = tf.gather_nd(feats, _get_gather_inds(im_x1, im_y0))
Id = tf.gather_nd(feats, _get_gather_inds(im_x1, im_y1))
# Calculate bilinear weights
wa = (im_x1_f - im_x) * (im_y1_f - im_y)
wb = (im_x1_f - im_x) * (im_y - im_y0_f)
wc = (im_x - im_x0_f) * (im_y1_f - im_y)
wd = (im_x - im_x0_f) * (im_y - im_y0_f)
wa, wb = tf.reshape(wa, [-1, 1]), tf.reshape(wb, [-1, 1])
wc, wd = tf.reshape(wc, [-1, 1]), tf.reshape(wd, [-1, 1])
net.wa, net.wb, net.wc, net.wd = wa, wb, wc, wd
net.Ia, net.Ib, net.Ic, net.Id = Ia, Ib, Ic, Id
Ibilin = tf.add_n([wa * Ia, wb * Ib, wc * Ic, wd * Id])
with tf.name_scope('AppendDepth'):
# Concatenate depth value along ray to feature
Ibilin = tf.concat(
[Ibilin, tf.reshape(im_z, [nV * nR, 1])], axis=1)
fdim = Ibilin.get_shape().as_list()[-1]
net.Ibilin = tf.reshape(Ibilin, [
net.batch_size, net.im_batch, net.nvox, net.nvox, net.nvox,
fdim
])
net.Ibilin = tf.transpose(net.Ibilin, [0, 1, 3, 2, 4, 5])
return net.Ibilin
def loss_l1(pred, gt):
return tf.losses.absolute_difference(gt, pred, scope='loss_l1')
def loss_ce(pred, gt_vox):
with tf.variable_scope('loss_ce'):
pred = tf.expand_dims(tf.reshape(pred, [-1]), axis=1)
gt_vox = tf.expand_dims(tf.reshape(gt_vox, [-1]), axis=1)
return tf.losses.sigmoid_cross_entropy(gt_vox, pred)
def concat_pool(feats):
batch_size = feats.get_shape().as_list()[0]
nvox = feats.get_shape().as_list()[2]
with tf.variable_scope('concat_pool'):
feats = tf.transpose(feats, [0, 5, 1, 2, 3, 4])
feats = tf.reshape(feats, [batch_size, -1, nvox, nvox, nvox])
feats = tf.transpose(feats, [0, 2, 3, 4, 1])
return feats
def form_image_grid(input_tensor, grid_shape, image_shape, num_channels):
"""Arrange a minibatch of images into a grid to form a single image.
Args:
input_tensor: Tensor. Minibatch of images to format, either 4D
([batch size, height, width, num_channels]) or flattened
([batch size, height * width * num_channels]).
grid_shape: Sequence of int. The shape of the image grid,
formatted as [grid_height, grid_width].
image_shape: Sequence of int. The shape of a single image,
formatted as [image_height, image_width].
num_channels: int. The number of channels in an image.
Returns:
Tensor representing a single image in which the input images have been
arranged into a grid.
Raises:
ValueError: The grid shape and minibatch size don't match, or the image
shape and number of channels are incompatible with the input tensor.
"""
if grid_shape[0] * grid_shape[1] != int(input_tensor.get_shape()[0]):
raise ValueError('Grid shape incompatible with minibatch size.')
if len(input_tensor.get_shape()) == 2:
num_features = image_shape[0] * image_shape[1] * num_channels
if int(input_tensor.get_shape()[1]) != num_features:
raise ValueError(
'Image shape and number of channels incompatible with '
'input tensor.')
elif len(input_tensor.get_shape()) == 4:
if (int(input_tensor.get_shape()[1]) != image_shape[0] or
int(input_tensor.get_shape()[2]) != image_shape[1] or
int(input_tensor.get_shape()[3]) != num_channels):
raise ValueError(
'Image shape and number of channels incompatible with'
'input tensor.')
else:
raise ValueError('Unrecognized input tensor format.')
height, width = grid_shape[0] * \
image_shape[0], grid_shape[1] * image_shape[1]
input_tensor = tf.reshape(input_tensor,
grid_shape + image_shape + [num_channels])
input_tensor = tf.transpose(input_tensor, [0, 1, 3, 2, 4])
input_tensor = tf.reshape(
input_tensor, [grid_shape[0], width, image_shape[0], num_channels])
input_tensor = tf.transpose(input_tensor, [0, 2, 1, 3])
input_tensor = tf.reshape(input_tensor, [1, height, width, num_channels])
return input_tensor
def voxel_views(in_vox, gh, gw, tsdf=False, pad=4, scope='voxel_views'):
def vis_tsdf(tv):
return 1.0 - tf.abs(tv) * 5.0
with tf.variable_scope(scope):
_, h, w, d, ch = in_vox.get_shape().as_list()
if not tsdf:
x_view = tf.reduce_max(in_vox, axis=1)
y_view = tf.reduce_max(in_vox, axis=2)
z_view = tf.reduce_max(in_vox, axis=3)
else:
x_view = vis_tsdf(in_vox[:, h / 2, :, :, :])
y_view = vis_tsdf(in_vox[:, :, w / 2, :, :])
z_view = vis_tsdf(in_vox[:, :, :, d / 2, :])
pad = [[0, 0], [pad, pad], [pad, pad], [0, 0]]
x_view = tf.pad(x_view, pad)
y_view = tf.pad(y_view, pad)
z_view = tf.pad(z_view, pad)
image_shape = x_view.get_shape().as_list()[1:3]
grid_shape = [gh, gw]
color_ch = 1
x_view = form_image_grid(x_view, grid_shape, image_shape, color_ch)
y_view = form_image_grid(y_view, grid_shape, image_shape, color_ch)
z_view = form_image_grid(z_view, grid_shape, image_shape, color_ch)
views = [
tf.cast(x_view * 255, tf.uint8),
tf.cast(y_view * 255, tf.uint8),
tf.cast(z_view * 255, tf.uint8)
]
return views
def im_views(ims, gh, gw, scope='im_views'):
with tf.variable_scope(scope):
_, _, h, w, ch = tf_static_shape(ims)
im_grid = form_image_grid(collapse_dims(ims), [gh, gw], [h, w], ch)
return tf.cast(im_grid * 255, tf.uint8)
def voxel_sum(net, tsdf=False):
vox_sum = []
pred_views = voxel_views(
collapse_dims(net.pred_vox),
net.batch_size,
net.im_batch,
tsdf,
scope='vox_pred')
gt_views = voxel_views(net.gt_vox, net.batch_size, 1, tsdf, scope='vox_gt')
caxis = 2
with tf.name_scope('voxel_vis'):
x_view = tf.concat([pred_views[0], gt_views[0]], axis=caxis)
vox_sum.append(tf.summary.image('x_view', x_view))
y_view = tf.concat([pred_views[1], gt_views[1]], axis=caxis)
vox_sum.append(tf.summary.image('y_view', y_view))
z_view = tf.concat([pred_views[2], gt_views[2]], axis=caxis)
vox_sum.append(tf.summary.image('z_view', z_view))
return tf.summary.merge(vox_sum)
def image_sum(im_tensor, nh, nw, tag='views'):
return tf.summary.image(tag + '_sum', im_views(im_tensor, nh, nw, tag))
def vis_depth(d, min_d=1, max_d=3, sc=10):
with tf.name_scope('vis_depth'):
d_alpha = tf.to_float(tf.logical_and(d < max_d, d > min_d))
d_v = d / sc * max_d
d_v = tf.concat([d_v, d_v, d_v, d_alpha], axis=-1)
return d_v
def depth_sum(depth_tensor, nh, nw, tag='depth_views'):
return tf.summary.image(tag + '_sum',
im_views(vis_depth(depth_tensor), nh, nw, tag))
def repeat_tensor(T, nrep, rep_dim=1):
repT = tf.expand_dims(T, rep_dim)
tile_dim = [1] * len(tf_static_shape(repT))
tile_dim[rep_dim] = nrep
repT = tf.tile(repT, tile_dim)
return repT
def collapse_dims(T):
shape = tf_static_shape(T)
return tf.reshape(T, [-1] + shape[2:])
def uncollapse_dims(T, s1, s2):
shape = tf_static_shape(T)
return tf.reshape(T, [s1, s2] + shape[1:])
def tf_static_shape(T):
return T.get_shape().as_list()