forked from matterport/lsm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvis_utils.py
258 lines (215 loc) · 8.05 KB
/
vis_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import numpy as np
from IPython.display import IFrame
from matplotlib import pyplot as plt
from scipy.io import loadmat
from scipy.ndimage.filters import median_filter
from config import BASE_DIR, SHAPENET_IM
from utils import mkdir_p
from uuid import uuid4
with open(os.path.join(BASE_DIR, 'pyntcloud.js'), 'r') as f:
TEMPLATE_POINTS = f.read()
def array_to_color(array, cmap="Oranges"):
s_m = plt.cm.ScalarMappable(cmap=cmap)
return s_m.to_rgba(array, norm=False)[:, :-1]
def plot_points(xyz,
colors=None,
size=0.1,
axis=False,
title=None,
html_out=None):
positions = xyz.reshape(-1).tolist()
mkdir_p('vis')
if html_out is None:
html_out = os.path.join('vis', 'pts{:s}.html'.format(uuid4()))
if title is None:
title = "PointCloud"
camera_position = xyz.max(0) + abs(xyz.max(0))
look = xyz.mean(0)
if colors is None:
colors = [1, 0.5, 0] * len(positions)
elif len(colors.shape) > 1:
colors = colors.reshape(-1).tolist()
if axis:
axis_size = xyz.ptp() * 1.5
else:
axis_size = 0
with open(html_out, "w") as html:
html.write(
TEMPLATE_POINTS.format(
title=title,
camera_x=camera_position[0],
camera_y=camera_position[1],
camera_z=camera_position[2],
look_x=look[0],
look_y=look[1],
look_z=look[2],
positions=positions,
colors=colors,
points_size=size,
axis_size=axis_size))
return IFrame(html_out, width=1024, height=768)
def image_grid(ims, mask=None):
if mask is not None:
ims[np.logical_not(mask)] = None
gh, gw, h, w, ch = ims.shape
disp_im = np.zeros([gh * h, gw * w, ch])
for y in range(gh):
for x in range(gw):
disp_im[y * h:(y + 1) * h, x * w:(x + 1) * w, :] = ims[y][x]
return disp_im
def voxel_grid(voxels, thresh=0.4, cmap='viridis'):
gh, gw, h, w, d, ch = voxels.shape
all_pts, all_clr = [], []
for bx in range(gh):
for ix in range(gw):
pts, clr = voxels2pts(voxels[bx][ix], cmap=cmap)
pts[:, 0] += ix * w
pts[:, 1] += bx * h
all_pts.append(pts)
all_clr.append(clr)
all_pts.append(pts)
all_clr.append(clr)
vis_pts, vis_clr = np.concatenate(
all_pts, axis=0), np.concatenate(
all_clr, axis=0)
return vis_pts, vis_clr
def voxels2pts(voxels, thresh=0.4, cmap="Oranges"):
if voxels.ndim == 4:
fvox = voxels[..., 0]
elif voxels.ndim == 3:
fvox = voxels
else:
print('Invalid number of dimension in voxel grid')
return
vox = (fvox > thresh).astype(np.int)
points = np.argwhere(vox > 0)
colors = array_to_color(fvox[vox > 0], cmap=cmap)
return points, colors
def voxel2mesh(voxels):
cube_verts = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0],
[1, 0, 1], [1, 1, 0], [1, 1, 1]] # 8 points
cube_faces = [[0, 1, 2], [1, 3, 2], [2, 3, 6], [3, 7, 6], [0, 2, 6],
[0, 6, 4], [0, 5, 1], [0, 4, 5], [6, 7, 5], [6, 5, 4],
[1, 7, 3], [1, 5, 7]] # 12 face
cube_verts = np.array(cube_verts)
cube_faces = np.array(cube_faces) + 1
l, m, n = voxels.shape
scale = 1.0 / voxels.shape[0]
cube_dist_scale = 1.1
verts = []
faces = []
curr_vert = 0
for i in range(l):
for j in range(m):
for k in range(n):
# If there is a non-empty voxel
if voxels[i, j, k] > 0:
verts.extend(
scale *
(cube_verts + cube_dist_scale * np.array([[i, j, k]])))
faces.extend(cube_faces + curr_vert)
curr_vert += len(cube_verts)
verts = np.array(verts) - 0.5
return verts, np.array(faces)
def write_obj(filename, verts, faces):
""" write the verts and faces on file."""
with open(filename, 'w') as f:
# write vertices
f.write('g\n# %d vertex\n' % len(verts))
for vert in verts:
f.write('v %f %f %f\n' % tuple(vert))
# write faces
f.write('# %d faces\n' % len(faces))
for face in faces:
f.write('f %d %d %d\n' % tuple(face))
def voxel2obj(filename, pred):
verts, faces = voxel2mesh(pred)
write_obj(filename, verts, faces)
def unproject_depth(d_im, K, R, im=None, dmin=1.0, dmax=3.0):
px, py, f = K[0, 2], K[1, 2], K[0, 0]
size = d_im.shape
x, y = np.meshgrid(range(size[0]), range(size[1]))
x, y = (x - px) * d_im / f, (y - py) * d_im / f
xyz = np.stack([x, y, d_im], axis=0)
xyz = np.reshape(xyz, [3, -1])
mask = np.logical_and(xyz[-1, :] < dmax, xyz[-1, :] > dmin)
xyz = xyz[:, mask]
clr = None
if im is not None:
im = np.transpose(im, [2, 0, 1])
im = np.reshape(im, [3, -1])
clr = im[:, mask]
tr = -np.matmul(R[:3, :3].T, R[:, 3][..., np.newaxis])
Rt = np.concatenate([R[:3, :3].T, tr], axis=1)
Xw = np.matmul(Rt,
np.concatenate([xyz, np.ones((1, xyz.shape[1]))], axis=0))
return np.transpose(Xw), np.transpose(clr)
def depth2mesh(classId,
shapeId,
dmap,
im_idx,
dmin=1.15,
dmax=2.85,
discThresh=0.035,
smooth=True,
obj=None):
shapeNetFolder = os.path.join(SHAPENET_IM, classId, shapeId)
camera_f = os.path.join(shapeNetFolder, 'camera_{:d}.mat'.format(im_idx))
mat = loadmat(camera_f)
K = mat['K']
px, py, f = K[0, 2], K[1, 2], K[0, 0]
R = mat['extrinsic'][:3, :]
tr = -np.matmul(R[:3, :3].T, R[:, 3][..., np.newaxis])
Rt = np.concatenate([R[:3, :3].T, tr], axis=1)
if obj is None:
out_f = 'depth/mesh_{}_{}_{}.obj'.format(classId, shapeId, im_idx)
else:
out_f = obj
depthMap = dmap
if smooth:
depthMap = median_filter(depthMap, (3, 3))
h, w = depthMap.shape
allPoints = np.ndarray(shape=(h, w, 5))
with open(out_f, 'w') as obj:
ind = 1
for y in range(0, h):
for x in range(0, w):
d_im = depthMap[y, x]
allPoints[y, x, 3] = depthMap[y, x]
if (d_im < dmax and d_im > dmin):
x_c, y_c = (x - px) * d_im / f, (y - py) * d_im / f
upointLocal = np.array([[x_c], [y_c], [d_im], [1]])
upoint = np.matmul(Rt, upointLocal)
allPoints[y, x, :3] = upoint[:3, 0]
allPoints[y, x, 4] = ind
ind = ind + 1
obj.write('v {} {} {}\n'.format(upoint[0, 0], upoint[1, 0],
upoint[2, 0]))
for y in range(0, h - 1):
for x in range(0, w - 1):
v = allPoints[y, x, 4]
vd = allPoints[y, x, 3]
vx = allPoints[y, x + 1, 4]
vxd = allPoints[y, x + 1, 3]
vy = allPoints[y + 1, x, 4]
vyd = allPoints[y + 1, x, 3]
vxy = allPoints[y + 1, x + 1, 4]
vxyd = allPoints[y + 1, x + 1, 3]
t1_minD = min(vd, vxd, vyd)
t1_maxD = max(vd, vxd, vyd)
if (t1_minD > dmin and t1_maxD < dmax and
t1_maxD - t1_minD < discThresh):
obj.write(
'f {:d} {:d} {:d}\n'.format(int(vy), int(vx), int(v)))
t2_minD = min(vxyd, vxd, vyd)
t2_maxD = max(vxyd, vxd, vyd)
if (t2_minD > dmin and t2_maxD < dmax and
t2_maxD - t2_minD < discThresh):
try:
obj.write('f {:d} {:d} {:d}\n'.format(
int(vxy), int(vx), int(vy)))
except:
print 'Error', vxy, vx, vy
return
return out_f