forked from yatengLG/SSD-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDemo_eval.py
32 lines (27 loc) · 1.32 KB
/
Demo_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# -*- coding: utf-8 -*-
# @Author : LG
from Model import SSD, Evaler
from Data import VOCDataset
from Configs import _C as cfg
from Data import SSDTramsfrom,SSDTargetTransform
# 训练数据集,VOC格式数据集, 训练数据取自 ImageSets/Main/train.txt'
train_dataset=VOCDataset(cfg, is_train=True, transform=SSDTramsfrom(cfg,is_train=True),
target_transform=SSDTargetTransform(cfg))
# 测试数据集,VOC格式数据集, 测试数据取自 ImageSets/Main/eval.txt'
test_dataset = VOCDataset(cfg=cfg, is_train=False,
transform=SSDTramsfrom(cfg=cfg, is_train=False),
target_transform=SSDTargetTransform(cfg))
if __name__ == '__main__':
# 模型测试只支持GPU单卡或多卡,不支持cpu
net = SSD(cfg)
# 将模型移动到gpu上,cfg.DEVICE.MAINDEVICE定义了模型所使用的主GPU
net.to(cfg.DEVICE.MAINDEVICE)
# 模型从权重文件中加载权重
net.load_pretrained_weight('Weights/pretrained/vgg_ssd300_voc0712.pkl')
# 初始化验证器,验证器参数通过cfg进行配置;也可传入参数进行配置,但不建议
evaler = Evaler(cfg, eval_devices=None)
# 验证器开始在数据集上验证模型
ap, map = evaler(model=net,
test_dataset=test_dataset)
print(ap)
print(map)