forked from jorgecasas/php-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SelectKBestTest.php
119 lines (101 loc) · 3.92 KB
/
SelectKBestTest.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
<?php
declare(strict_types=1);
namespace Phpml\Tests\FeatureSelection;
use Phpml\Dataset\Demo\IrisDataset;
use Phpml\Exception\InvalidArgumentException;
use Phpml\Exception\InvalidOperationException;
use Phpml\FeatureSelection\ScoringFunction\ANOVAFValue;
use Phpml\FeatureSelection\ScoringFunction\UnivariateLinearRegression;
use Phpml\FeatureSelection\SelectKBest;
use PHPUnit\Framework\TestCase;
final class SelectKBestTest extends TestCase
{
public function testSelectKBestWithDefaultScoringFunction(): void
{
$samples = [[1, 2, 1], [1, 3, 4], [5, 2, 1], [1, 3, 3], [1, 3, 4], [0, 3, 5]];
$targets = ['a', 'a', 'a', 'b', 'b', 'b'];
$selector = new SelectKBest(2);
$selector->fit($samples, $targets);
$selector->transform($samples);
self::assertEquals([[2, 1], [3, 4], [2, 1], [3, 3], [3, 4], [3, 5]], $samples);
}
public function testSelectKBestWithKBiggerThanFeatures(): void
{
$samples = [[1, 2, 1], [1, 3, 4], [5, 2, 1], [1, 3, 3], [1, 3, 4], [0, 3, 5]];
$targets = ['a', 'a', 'a', 'b', 'b', 'b'];
$selector = new SelectKBest(4);
$selector->fit($samples, $targets);
$selector->transform($samples);
self::assertEquals([[1, 2, 1], [1, 3, 4], [5, 2, 1], [1, 3, 3], [1, 3, 4], [0, 3, 5]], $samples);
}
public function testSelectKBestWithIrisDataset(): void
{
$dataset = new IrisDataset();
$selector = new SelectKBest(2, new ANOVAFValue());
$selector->fit($samples = $dataset->getSamples(), $dataset->getTargets());
$selector->transform($samples);
self::assertEquals(2, count($samples[0]));
}
public function testSelectKBestWithRegressionScoring(): void
{
$samples = [[73676, 1996, 2], [77006, 1998, 5], [10565, 2000, 4], [146088, 1995, 2], [15000, 2001, 2], [65940, 2000, 2], [9300, 2000, 2], [93739, 1996, 2], [153260, 1994, 2], [17764, 2002, 2], [57000, 1998, 2], [15000, 2000, 2]];
$targets = [2000, 2750, 15500, 960, 4400, 8800, 7100, 2550, 1025, 5900, 4600, 4400];
$selector = new SelectKBest(2, new UnivariateLinearRegression());
$selector->fit($samples, $targets);
$selector->transform($samples);
self::assertEquals(
[[73676, 1996], [77006, 1998], [10565, 2000], [146088, 1995], [15000, 2001], [65940, 2000], [9300, 2000], [93739, 1996], [153260, 1994], [17764, 2002], [57000, 1998], [15000, 2000]],
$samples
);
}
public function testSelectKBestIssue386(): void
{
$samples = [
[
0.0006729998475705993,
0.0,
0.999999773507577,
0.0,
0.0,
6.66666515671718E-7,
3.33333257835859E-6,
6.66666515671718E-6,
],
[
0.0006729998475849566,
0.0,
0.9999997735289103,
0.0,
0.0,
6.666665156859402E-7,
3.3333325784297012E-6,
1.3333330313718804E-6,
],
];
$targets = [15.5844, 4.45284];
$selector = new SelectKBest(2);
$selector->fit($samples, $targets);
self::assertEquals([
-2.117582368135751E-22,
0.0,
0.0,
0.0,
0.0,
1.0097419586828951E-28,
0.0,
1.4222215779620095E-11,
], $selector->scores());
}
public function testThrowExceptionOnEmptyTargets(): void
{
$this->expectException(InvalidArgumentException::class);
$selector = new SelectKBest(2, new ANOVAFValue());
$selector->fit([[1, 2, 3], [4, 5, 6]], []);
}
public function testThrowExceptionWhenNotTrained(): void
{
$this->expectException(InvalidOperationException::class);
$selector = new SelectKBest(2, new ANOVAFValue());
$selector->scores();
}
}