forked from solerjuan/astroHOG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
imatools.py
88 lines (60 loc) · 2.35 KB
/
imatools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#
#
#
from scipy import interpolate
import numpy as np
def interpolate_missing_pixels(image, method='nearest', fill_value=0.):
h, w = image.shape[:2]
xx, yy = np.meshgrid(np.arange(w), np.arange(h))
mask=np.isnan(image)
known_x = xx[~mask]
known_y = yy[~mask]
known_v = image[~mask]
missing_x = xx[mask]
missing_y = yy[mask]
interp_values = interpolate.griddata((known_x, known_y), known_v, (missing_x, missing_y), method=method, fill_value=fill_value)
interp_image = image.copy()
interp_image[missing_y, missing_x] = interp_values
return interp_image
# -------------------------------------------------------------------------------
def fill_missing_pixels(image, fill_value=0.):
h, w = image.shape[:2]
xx, yy = np.meshgrid(np.arange(w), np.arange(h))
mask=np.isnan(image)
known_x = xx[~mask]
known_y = yy[~mask]
known_v = image[~mask]
missing_x = xx[mask]
missing_y = yy[mask]
interp_image = image.copy()
interp_image[missing_y, missing_x] = fill_value
return interp_image
# -------------------------------------------------------------------------------
def gaussian2D(x, y, cen_x, cen_y, sig_x, sig_y, offset):
return np.exp(-(((cen_x-x)/sig_x)**2 + ((cen_y-y)/sig_y)**2)/2.0) + offset
def residuals(p, x, y, z):
height = p["height"].value
cen_x = p["centroid_x"].value
cen_y = p["centroid_y"].value
sigma_x = p["sigma_x"].value
sigma_y = p["sigma_y"].value
offset = p["background"].value
return (z - height*gaussian2D(x,y, cen_x, cen_y, sigma_x, sigma_y, offset))
# -------------------------------------------------------------------------------
def calc_acorientation(image):
corr=signal.correlate2d(image, image, boundary='fill', mode='full')
sz=np.shape(corr)
xx, yy = np.meshgrid(np.arange(sz[0]), np.arange(sz[1]))
initial=Parameters()
initial.add("height",value=np.nanmean(corr))
initial.add("centroid_x",value=0.5*sz[0])
initial.add("centroid_y",value=0.5*sz[1])
initial.add("sigma_x",value=0.25*sz[0])
initial.add("sigma_y",value=0.25*sz[1])
initial.add("background",value=0.)
fit=minimize(residuals, initial, args=(xx, yy, corr))
output=fit.params.valuesdict()
sigmas=[output['sigma_x'],output['sigma_y']]
asymI=np.nanmax(sigmas)/np.nanmin(sigmas)
alphaI=np.arctan2(output['sigma_y'],output['sigma_x'])
return asymI, alphaI