forked from Vahe1994/AQLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatautils.py
261 lines (237 loc) · 10.6 KB
/
datautils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import random
from typing import Optional
import datasets
import numpy as np
import torch
from datasets import load_dataset
from packaging import version
from tqdm import trange
from transformers import AutoTokenizer, LlamaTokenizer
def set_seed(seed: Optional[int]):
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)
def get_red_pajama(nsamples, seqlen, tokenizer, eval_mode=False):
print("Loading red_pajama from togethercomputer/RedPajama-Data-1T-Sample")
assert not eval_mode, "Only train set is supported in RedPajama"
traindata = load_dataset("togethercomputer/RedPajama-Data-1T-Sample", split="train")
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
trainloader = []
for _ in trange(nsamples, desc="Making red_pajama calibration set", leave=False):
while True:
i = random.randint(0, len(traindata) - 1)
trainenc = tokenizer(traindata[i]["text"], return_tensors="pt")
if trainenc.input_ids.shape[1] > seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
assert inp.shape[1] == seqlen
trainloader.append(inp)
return trainloader
def get_wikitext2(nsamples, seqlen, tokenizer, eval_mode=False):
if not eval_mode:
traindata = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
trainenc = tokenizer("\n\n".join(traindata["text"]), return_tensors="pt")
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader
else:
testdata = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")
testenc = tokenizer("\n\n".join(testdata["text"]), return_tensors="pt")
return testenc
def get_ptb(nsamples, seqlen, tokenizer, eval_mode=False):
if not eval_mode:
traindata = load_dataset("ptb_text_only", "penn_treebank", split="train")
trainenc = tokenizer("\n\n".join(traindata["sentence"]), return_tensors="pt")
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader
else:
valdata = load_dataset("ptb_text_only", "penn_treebank", split="validation")
testenc = tokenizer("\n\n".join(valdata["sentence"]), return_tensors="pt")
return testenc
def get_c4(nsamples, seqlen, tokenizer, eval_mode=False):
if not eval_mode:
traindata = load_dataset(
"allenai/c4",
"default",
data_files={"train": "en/c4-train.00000-of-01024.json.gz"},
split="train",
revision="607bd4c8450a42878aa9ddc051a65a055450ef87",
)
trainloader = []
for _ in range(nsamples):
while True:
i = random.randint(0, len(traindata) - 1)
trainenc = tokenizer(traindata[i]["text"], return_tensors="pt")
if trainenc.input_ids.shape[1] >= seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader
else:
valdata = load_dataset(
"allenai/c4",
"default",
data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"},
split="validation",
revision="607bd4c8450a42878aa9ddc051a65a055450ef87",
)
random.seed(0)
valenc = []
for _ in range(256):
while True:
i = random.randint(0, len(valdata) - 1)
tmp = tokenizer(valdata[i]["text"], return_tensors="pt")
if tmp.input_ids.shape[1] >= seqlen:
break
if tmp.input_ids.shape[1] == seqlen:
# rare case, discovered with Yi tokenizer
valenc.append(tmp.input_ids)
else:
i = random.randint(0, tmp.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
valenc.append(tmp.input_ids[:, i:j])
valenc = torch.hstack(valenc)
return valenc
def get_ptb_new(nsamples, seqlen, tokenizer, eval_mode=False):
if not eval_mode:
traindata = load_dataset("ptb_text_only", "penn_treebank", split="train")
trainenc = tokenizer(" ".join(traindata["sentence"]), return_tensors="pt")
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader
else:
testdata = load_dataset("ptb_text_only", "penn_treebank", split="test")
testenc = tokenizer(" ".join(testdata["sentence"]), return_tensors="pt")
return testenc
def get_c4_new(nsamples, seqlen, tokenizer, eval_mode=False):
if not eval_mode:
traindata = load_dataset(
"allenai/c4",
"default",
data_files={"train": "en/c4-train.00000-of-01024.json.gz"},
split="train",
revision="607bd4c8450a42878aa9ddc051a65a055450ef87",
)
trainloader = []
for _ in range(nsamples):
while True:
i = random.randint(0, len(traindata) - 1)
trainenc = tokenizer(traindata[i]["text"], return_tensors="pt")
if trainenc.input_ids.shape[1] >= seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader
else:
valdata = load_dataset(
"allenai/c4",
"default",
data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"},
split="validation",
revision="607bd4c8450a42878aa9ddc051a65a055450ef87",
)
valenc = tokenizer(" ".join(valdata[:1100]["text"]), return_tensors="pt")
valenc = valenc.input_ids[:, : (256 * seqlen)]
return valenc
def get_loaders(name, nsamples=128, seed=0, seqlen=2048, eval_mode=False, model_path=None):
"""
Loads and prepares data for a Transformers model.
Args:
name (str): The name of the dataset to load.
This can be one of 'wikitext2', 'c4', 'ptb','pajama' for datasets loaded from Huggingface datasets,
or 'none' for cases where a dataset is not needed, like RTN. It can also accept data path to custom file.
nsamples (int, optional): The number of samples to load from the dataset. Defaults to 128.
seed (int, optional): The random seed value for data shuffling and splitting. Defaults to 0.
seqlen (int, optional): The maximum sequence length for input tokenization. Defaults to 2048.
model_path (str, optional): The path to the pretrained model weights or full model name.
used to detect llama to call proper tokenizer.
see https://github.com/huggingface/transformers/issues/22222#issuecomment-1488578722 for reasons.
eval_mode (bool, optional). defines slice selection for 'wikitext2', 'c4', 'ptb' datasets.
leave False for train slice.
Returns:
data (torch.utils.data.DataLoader or iterable): Data iterable for the dataset.
Note:
the popular decapoda-research Llama models have errors in tokenizer config, specifically
incorrect token ids for BOS, EOS. This gets corrected to ensure compatibility with transformers
of versions 4.29 and above.
"""
set_seed(seed)
# for pre-tokenized datasets
if name.lower() == "none":
print("Not loading any dataset. (OK if you use no compression or methods like RTN.)")
return None
elif os.path.isfile(name):
try:
data = torch.load(name)[:nsamples]
except FileNotFoundError:
raise FileNotFoundError(
f"Failed to load custom data from {name}.",
"Check data path or use one of [c4, wikitext2, ptb, pajama, none]",
)
else:
# for datasets requiring tokenization
if "llama" in model_path.lower():
tokenizer = LlamaTokenizer.from_pretrained(model_path, use_fast=False)
# fix for transformer 4.28.0.dev0 compatibility
if tokenizer.bos_token_id != 1 or tokenizer.eos_token_id != 2:
try:
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
print(f"bos/eos tokens updated: {tokenizer.bos_token_id=}, {tokenizer.eos_token_id=}")
except AttributeError:
pass
print(f"bos/eos tokens unchanged: {tokenizer.bos_token_id=}, {tokenizer.eos_token_id=}")
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)
if name.lower() == "wikitext2":
data = get_wikitext2(nsamples, seqlen, tokenizer, eval_mode=eval_mode)
elif name.lower() == "pajama":
data = get_red_pajama(nsamples, seqlen, tokenizer, eval_mode=eval_mode)
elif name.lower() == "ptb":
data = get_ptb(nsamples, seqlen, tokenizer, eval_mode=eval_mode)
elif name.lower() == "ptb_new":
data = get_ptb_new(nsamples, seqlen, tokenizer, eval_mode=eval_mode)
elif name.lower() == "c4":
data = get_c4(nsamples, seqlen, tokenizer, eval_mode=eval_mode)
elif name.lower() == "c4_new":
data = get_c4_new(nsamples, seqlen, tokenizer, eval_mode=eval_mode)
else:
raise ValueError(
f"Failed to load data from {name}.",
"Check dataset name or path or use one of [c4, wikitext2, ptb, pajama, none]",
)
if hasattr(data, "input_ids"):
data = data.input_ids
print(f"Loaded data from {name}; {len(data)=} sequences")
return data