forked from macmade/OBJC4-437.1-Runtime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
objc-selopt.h
1041 lines (900 loc) · 35 KB
/
objc-selopt.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2008 Apple Inc. All rights reserved.
*
* @APPLE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_LICENSE_HEADER_END@
*/
/*
Portions derived from:
--------------------------------------------------------------------
lookup8.c, by Bob Jenkins, January 4 1997, Public Domain.
hash(), hash2(), hash3, and mix() are externally useful functions.
Routines to test the hash are included if SELF_TEST is defined.
You can use this free for any purpose. It has no warranty.
--------------------------------------------------------------------
------------------------------------------------------------------------------
perfect.c: code to generate code for a hash for perfect hashing.
(c) Bob Jenkins, September 1996, December 1999
You may use this code in any way you wish, and it is free. No warranty.
I hereby place this in the public domain.
Source is http://burtleburtle.net/bob/c/perfect.c
------------------------------------------------------------------------------
*/
/*
* objc-selopt.h
* Interface between libobjc and dyld
* for selector uniquing in the dyld shared cache.
*
* When building the shared cache, dyld locates all selectors and selector
* references in the cached images. It builds a perfect hash table out of
* them and writes the table into the shared cache copy of libobjc.
* libobjc then uses that table as the builtin selector list.
*
* Versioning
* The table has a version number. dyld and objc can both ignore the table
* if the other used the wrong version number.
*
* Completeness
* Not all libraries are in the shared cache. Libraries that are in the
* shared cache and were optimized are specially marked. Libraries on
* disk never include those marks.
*
* Coherency
* Libraries optimized in the shared cache can be replaced by unoptimized
* copies from disk when loaded. The copy from disk is not marked and will
* be fixed up by libobjc. The shared cache copy is still mapped into the
* process, so the table can point to cstring data in that library's part
* of the shared cache without trouble.
*
* Atomicity
* dyld writes the table itself last. If dyld marks some metadata as
* updated but then fails to write a table for some reason, libobjc
* fixes up all metadata as if it were not marked.
*/
#ifndef _OBJC_SELOPT_H
#define _OBJC_SELOPT_H
/*
DO NOT INCLUDE ANY objc HEADERS HERE
dyld USES THIS FILE AND CANNOT SEE THEM
*/
#include <stdint.h>
#include <stdlib.h>
#include <ext/hash_map>
/*
DO NOT INCLUDE ANY objc HEADERS HERE
dyld USES THIS FILE AND CANNOT SEE THEM
*/
// #define SELOPT_DEBUG
namespace objc_selopt {
typedef int32_t objc_selopt_offset_t;
#ifdef SELOPT_WRITE
// Perfect hash code is at the end of this file.
struct perfect_hash {
uint32_t capacity;
uint32_t occupied;
uint32_t shift;
uint32_t mask;
uint64_t salt;
uint32_t scramble[256];
uint8_t *tab; // count == mask+1; free with delete[]
perfect_hash() : tab(0) { }
~perfect_hash() { if (tab) delete[] tab; }
};
struct eqstr {
bool operator()(const char* s1, const char* s2) const {
return strcmp(s1, s2) == 0;
}
};
typedef __gnu_cxx::hash_map<const char *, uint64_t, __gnu_cxx::hash<const char *>, eqstr> string_map;
static perfect_hash make_perfect(const string_map& strings);
#endif
static uint64_t lookup8( uint8_t *k, size_t length, uint64_t level);
enum { VERSION = 3 };
struct objc_selopt_t {
uint32_t version; /* this is version 3: external cstrings */
uint32_t capacity;
uint32_t occupied;
uint32_t shift;
uint32_t mask;
uint32_t zero;
uint64_t salt;
uint64_t base;
uint32_t scramble[256];
uint8_t tab[0]; /* tab[mask+1] (always power-of-2) */
// int32_t offsets[capacity]; /* offsets from &version to cstrings */
objc_selopt_offset_t *offsets() { return (objc_selopt_offset_t *)&tab[mask+1]; }
const objc_selopt_offset_t *offsets() const { return (const objc_selopt_offset_t *)&tab[mask+1]; }
uint32_t hash(const char *key) const
{
uint64_t val = lookup8((uint8_t*)key, strlen(key), salt);
uint32_t index = (uint32_t)(val>>shift) ^ scramble[tab[val&mask]];
return index;
}
const char *get(const char *key) const
{
const char *result = (const char *)this + offsets()[hash(key)];
if (0 == strcmp(key, result)) return result;
else return NULL;
}
#ifdef SELOPT_WRITE
void set(const char *key, objc_selopt_offset_t value)
{
offsets()[hash(key)] = value;
}
#endif
};
// Initializer for empty table of type uint32_t[].
#define X8(x) x, x, x, x, x, x, x, x
#define X64(x) X8(x), X8(x), X8(x), X8(x), X8(x), X8(x), X8(x), X8(x)
#define X256(x) X64(x), X64(x), X64(x), X64(x)
#define SELOPT_INITIALIZER \
{ objc_selopt::VERSION, 4, 4, 63, 3, 0, 0,0, 0,0, X256(0), 0, 20, 20, 20, 20 };
/*
--------------------------------------------------------------------
mix -- mix 3 64-bit values reversibly.
mix() takes 48 machine instructions, but only 24 cycles on a superscalar
machine (like Intel's new MMX architecture). It requires 4 64-bit
registers for 4::2 parallelism.
All 1-bit deltas, all 2-bit deltas, all deltas composed of top bits of
(a,b,c), and all deltas of bottom bits were tested. All deltas were
tested both on random keys and on keys that were nearly all zero.
These deltas all cause every bit of c to change between 1/3 and 2/3
of the time (well, only 113/400 to 287/400 of the time for some
2-bit delta). These deltas all cause at least 80 bits to change
among (a,b,c) when the mix is run either forward or backward (yes it
is reversible).
This implies that a hash using mix64 has no funnels. There may be
characteristics with 3-bit deltas or bigger, I didn't test for
those.
--------------------------------------------------------------------
*/
#define mix64(a,b,c) \
{ \
a -= b; a -= c; a ^= (c>>43); \
b -= c; b -= a; b ^= (a<<9); \
c -= a; c -= b; c ^= (b>>8); \
a -= b; a -= c; a ^= (c>>38); \
b -= c; b -= a; b ^= (a<<23); \
c -= a; c -= b; c ^= (b>>5); \
a -= b; a -= c; a ^= (c>>35); \
b -= c; b -= a; b ^= (a<<49); \
c -= a; c -= b; c ^= (b>>11); \
a -= b; a -= c; a ^= (c>>12); \
b -= c; b -= a; b ^= (a<<18); \
c -= a; c -= b; c ^= (b>>22); \
}
/*
--------------------------------------------------------------------
hash() -- hash a variable-length key into a 64-bit value
k : the key (the unaligned variable-length array of bytes)
len : the length of the key, counting by bytes
level : can be any 8-byte value
Returns a 64-bit value. Every bit of the key affects every bit of
the return value. No funnels. Every 1-bit and 2-bit delta achieves
avalanche. About 41+5len instructions.
The best hash table sizes are powers of 2. There is no need to do
mod a prime (mod is sooo slow!). If you need less than 64 bits,
use a bitmask. For example, if you need only 10 bits, do
h = (h & hashmask(10));
In which case, the hash table should have hashsize(10) elements.
If you are hashing n strings (uint8_t **)k, do it like this:
for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
By Bob Jenkins, Jan 4 1997. [email protected]. You may
use this code any way you wish, private, educational, or commercial,
but I would appreciate if you give me credit.
See http://burtleburtle.net/bob/hash/evahash.html
Use for hash table lookup, or anything where one collision in 2^^64
is acceptable. Do NOT use for cryptographic purposes.
--------------------------------------------------------------------
*/
static uint64_t lookup8( uint8_t *k, size_t length, uint64_t level)
// uint8_t *k; /* the key */
// uint64_t length; /* the length of the key */
// uint64_t level; /* the previous hash, or an arbitrary value */
{
uint64_t a,b,c;
size_t len;
/* Set up the internal state */
len = length;
a = b = level; /* the previous hash value */
c = 0x9e3779b97f4a7c13LL; /* the golden ratio; an arbitrary value */
/*---------------------------------------- handle most of the key */
while (len >= 24)
{
a += (k[0] +((uint64_t)k[ 1]<< 8)+((uint64_t)k[ 2]<<16)+((uint64_t)k[ 3]<<24)
+((uint64_t)k[4 ]<<32)+((uint64_t)k[ 5]<<40)+((uint64_t)k[ 6]<<48)+((uint64_t)k[ 7]<<56));
b += (k[8] +((uint64_t)k[ 9]<< 8)+((uint64_t)k[10]<<16)+((uint64_t)k[11]<<24)
+((uint64_t)k[12]<<32)+((uint64_t)k[13]<<40)+((uint64_t)k[14]<<48)+((uint64_t)k[15]<<56));
c += (k[16] +((uint64_t)k[17]<< 8)+((uint64_t)k[18]<<16)+((uint64_t)k[19]<<24)
+((uint64_t)k[20]<<32)+((uint64_t)k[21]<<40)+((uint64_t)k[22]<<48)+((uint64_t)k[23]<<56));
mix64(a,b,c);
k += 24; len -= 24;
}
/*------------------------------------- handle the last 23 bytes */
c += length;
switch(len) /* all the case statements fall through */
{
case 23: c+=((uint64_t)k[22]<<56);
case 22: c+=((uint64_t)k[21]<<48);
case 21: c+=((uint64_t)k[20]<<40);
case 20: c+=((uint64_t)k[19]<<32);
case 19: c+=((uint64_t)k[18]<<24);
case 18: c+=((uint64_t)k[17]<<16);
case 17: c+=((uint64_t)k[16]<<8);
/* the first byte of c is reserved for the length */
case 16: b+=((uint64_t)k[15]<<56);
case 15: b+=((uint64_t)k[14]<<48);
case 14: b+=((uint64_t)k[13]<<40);
case 13: b+=((uint64_t)k[12]<<32);
case 12: b+=((uint64_t)k[11]<<24);
case 11: b+=((uint64_t)k[10]<<16);
case 10: b+=((uint64_t)k[ 9]<<8);
case 9: b+=((uint64_t)k[ 8]);
case 8: a+=((uint64_t)k[ 7]<<56);
case 7: a+=((uint64_t)k[ 6]<<48);
case 6: a+=((uint64_t)k[ 5]<<40);
case 5: a+=((uint64_t)k[ 4]<<32);
case 4: a+=((uint64_t)k[ 3]<<24);
case 3: a+=((uint64_t)k[ 2]<<16);
case 2: a+=((uint64_t)k[ 1]<<8);
case 1: a+=((uint64_t)k[ 0]);
/* case 0: nothing left to add */
}
mix64(a,b,c);
/*-------------------------------------------- report the result */
return c;
}
#ifdef SELOPT_WRITE
static const char *
write_selopt(void *dst, uint64_t base, size_t dstSize,
string_map& strings, bool little_endian,
size_t *outSize)
{
if (strings.size() == 0) return false;
perfect_hash phash = make_perfect(strings);
if (phash.capacity == 0) {
return "perfect hash failed (selectors not optimized)";
}
size_t size = sizeof(objc_selopt_t) + (phash.mask+1) + phash.capacity * sizeof(objc_selopt_offset_t);
if (size > dstSize) {
return "selector section too small (selectors not optimized)";
}
uint8_t *buf = new uint8_t[size];
objc_selopt_t *selopt = (objc_selopt_t *)buf;
// Set header
selopt->version = VERSION;
selopt->capacity = phash.capacity;
selopt->occupied = phash.occupied;
selopt->shift = phash.shift;
selopt->mask = phash.mask;
selopt->zero = 0;
selopt->salt = phash.salt;
selopt->base = base;
// Set hash data
for (uint32_t i = 0; i < 256; i++) {
selopt->scramble[i] = phash.scramble[i];
}
for (uint32_t i = 0; i < phash.mask+1; i++) {
selopt->tab[i] = phash.tab[i];
}
// Set offsets to ""
for (uint32_t i = 0; i < phash.capacity; i++) {
selopt->offsets()[i] =
(objc_selopt_offset_t)offsetof(objc_selopt_t, zero);
}
// Set real string offsets
# define SHIFT (64 - 8*sizeof(objc_selopt_offset_t))
string_map::const_iterator s;
for (s = strings.begin(); s != strings.end(); ++s) {
int64_t offset = s->second - base;
if ((offset<<SHIFT)>>SHIFT != offset) {
delete[] buf;
return "selector offset too big (selectors not optimized)";
}
selopt->set(s->first, (objc_selopt_offset_t)offset);
}
# undef SHIFT;
// Byte-swap everything
#define S32(x) x = little_endian ? OSSwapHostToLittleInt32(x) : OSSwapHostToBigInt32(x)
#define S64(x) x = little_endian ? OSSwapHostToLittleInt64(x) : OSSwapHostToBigInt64(x)
for (uint32_t i = 0; i < 256; i++) {
S32(selopt->scramble[i]);
}
// tab is array of bytes, no swap needed
for (uint32_t i = 0; i < phash.capacity; i++) {
S32(selopt->offsets()[i]);
}
S32(selopt->version);
S32(selopt->capacity);
S32(selopt->occupied);
S32(selopt->shift);
S32(selopt->mask);
S32(selopt->zero);
S64(selopt->salt);
S64(selopt->base);
#undef S32
#undef S64
memcpy(dst, selopt, size);
if (outSize) *outSize = size;
delete[] buf;
return NULL;
}
/*
------------------------------------------------------------------------------
This generates a minimal perfect hash function. That means, given a
set of n keys, this determines a hash function that maps each of
those keys into a value in 0..n-1 with no collisions.
The perfect hash function first uses a normal hash function on the key
to determine (a,b) such that the pair (a,b) is distinct for all
keys, then it computes a^scramble[tab[b]] to get the final perfect hash.
tab[] is an array of 1-byte values and scramble[] is a 256-term array of
2-byte or 4-byte values. If there are n keys, the length of tab[] is a
power of two between n/3 and n.
I found the idea of computing distinct (a,b) values in "Practical minimal
perfect hash functions for large databases", Fox, Heath, Chen, and Daoud,
Communications of the ACM, January 1992. They found the idea in Chichelli
(CACM Jan 1980). Beyond that, our methods differ.
The key is hashed to a pair (a,b) where a in 0..*alen*-1 and b in
0..*blen*-1. A fast hash function determines both a and b
simultaneously. Any decent hash function is likely to produce
hashes so that (a,b) is distinct for all pairs. I try the hash
using different values of *salt* until all pairs are distinct.
The final hash is (a XOR scramble[tab[b]]). *scramble* is a
predetermined mapping of 0..255 into 0..smax-1. *tab* is an
array that we fill in in such a way as to make the hash perfect.
First we fill in all values of *tab* that are used by more than one
key. We try all possible values for each position until one works.
This leaves m unmapped keys and m values that something could hash to.
If you treat unmapped keys as lefthand nodes and unused hash values
as righthand nodes, and draw a line connecting each key to each hash
value it could map to, you get a bipartite graph. We attempt to
find a perfect matching in this graph. If we succeed, we have
determined a perfect hash for the whole set of keys.
*scramble* is used because (a^tab[i]) clusters keys around *a*.
------------------------------------------------------------------------------
*/
typedef uint64_t ub8;
#define UB8MAXVAL 0xffffffffffffffffLL
#define UB8BITS 64
typedef uint32_t ub4;
#define UB4MAXVAL 0xffffffff
#define UB4BITS 32
typedef uint16_t ub2;
#define UB2MAXVAL 0xffff
#define UB2BITS 16
typedef uint8_t ub1;
#define UB1MAXVAL 0xff
#define UB1BITS 8
#define TRUE 1
#define FALSE 0
#define SCRAMBLE_LEN 256 // ((ub4)1<<16) /* length of *scramble* */
#define RETRY_INITKEY 2048 /* number of times to try to find distinct (a,b) */
#define RETRY_PERFECT 4 /* number of times to try to make a perfect hash */
/* representation of a key */
struct key
{
ub1 *name_k; /* the actual key */
ub4 len_k; /* the length of the actual key */
ub4 hash_k; /* the initial hash value for this key */
/* beyond this point is mapping-dependent */
ub4 a_k; /* a, of the key maps to (a,b) */
ub4 b_k; /* b, of the key maps to (a,b) */
struct key *nextb_k; /* next key with this b */
};
typedef struct key key;
/* things indexed by b of original (a,b) pair */
struct bstuff
{
ub2 val_b; /* hash=a^tabb[b].val_b */
key *list_b; /* tabb[i].list_b is list of keys with b==i */
ub4 listlen_b; /* length of list_b */
ub4 water_b; /* high watermark of who has visited this map node */
};
typedef struct bstuff bstuff;
/* things indexed by final hash value */
struct hstuff
{
key *key_h; /* tabh[i].key_h is the key with a hash of i */
};
typedef struct hstuff hstuff;
/* things indexed by queue position */
struct qstuff
{
bstuff *b_q; /* b that currently occupies this hash */
ub4 parent_q; /* queue position of parent that could use this hash */
ub2 newval_q; /* what to change parent tab[b] to to use this hash */
ub2 oldval_q; /* original value of tab[b] */
};
typedef struct qstuff qstuff;
/*
------------------------------------------------------------------------------
Find the mapping that will produce a perfect hash
------------------------------------------------------------------------------
*/
/* return the ceiling of the log (base 2) of val */
static ub4 log2u(ub4 val)
{
ub4 i;
for (i=0; ((ub4)1<<i) < val; ++i)
;
return i;
}
/* compute p(x), where p is a permutation of 0..(1<<nbits)-1 */
/* permute(0)=0. This is intended and useful. */
static ub4 permute(ub4 x, ub4 nbits)
// ub4 x; /* input, a value in some range */
// ub4 nbits; /* input, number of bits in range */
{
int i;
int mask = ((ub4)1<<nbits)-1; /* all ones */
int const2 = 1+nbits/2;
int const3 = 1+nbits/3;
int const4 = 1+nbits/4;
int const5 = 1+nbits/5;
for (i=0; i<20; ++i)
{
x = (x+(x<<const2)) & mask;
x = (x^(x>>const3));
x = (x+(x<<const4)) & mask;
x = (x^(x>>const5));
}
return x;
}
/* initialize scramble[] with distinct random values in 0..smax-1 */
static void scrambleinit(ub4 *scramble, ub4 smax)
// ub4 *scramble; /* hash is a^scramble[tab[b]] */
// ub4 smax; /* scramble values should be in 0..smax-1 */
{
ub4 i;
/* fill scramble[] with distinct random integers in 0..smax-1 */
for (i=0; i<SCRAMBLE_LEN; ++i)
{
scramble[i] = permute(i, log2u(smax));
}
}
/*
* put keys in tabb according to key->b_k
* check if the initial hash might work
*/
static int inittab(bstuff *tabb, ub4 blen, key *keys, ub4 nkeys, int complete)
// bstuff *tabb; /* output, list of keys with b for (a,b) */
// ub4 blen; /* length of tabb */
// key *keys; /* list of keys already hashed */
// int complete; /* TRUE means to complete init despite collisions */
{
int nocollision = TRUE;
ub4 i;
memset((void *)tabb, 0, (size_t)(sizeof(bstuff)*blen));
/* Two keys with the same (a,b) guarantees a collision */
for (i = 0; i < nkeys; i++) {
key *mykey = keys+i;
key *otherkey;
for (otherkey=tabb[mykey->b_k].list_b;
otherkey;
otherkey=otherkey->nextb_k)
{
if (mykey->a_k == otherkey->a_k)
{
nocollision = FALSE;
if (!complete)
return FALSE;
}
}
++tabb[mykey->b_k].listlen_b;
mykey->nextb_k = tabb[mykey->b_k].list_b;
tabb[mykey->b_k].list_b = mykey;
}
/* no two keys have the same (a,b) pair */
return nocollision;
}
/* Do the initial hash for normal mode (use lookup and checksum) */
static void initnorm(key *keys, ub4 nkeys, ub4 alen, ub4 blen, ub4 smax, ub8 salt)
// key *keys; /* list of all keys */
// ub4 alen; /* (a,b) has a in 0..alen-1, a power of 2 */
// ub4 blen; /* (a,b) has b in 0..blen-1, a power of 2 */
// ub4 smax; /* maximum range of computable hash values */
// ub4 salt; /* used to initialize the hash function */
// gencode *final; /* output, code for the final hash */
{
ub4 loga = log2u(alen); /* log based 2 of blen */
ub4 i;
for (i = 0; i < nkeys; i++) {
key *mykey = keys+i;
ub8 hash = lookup8(mykey->name_k, mykey->len_k, salt);
mykey->a_k = (loga > 0) ? hash>>(UB8BITS-loga) : 0;
mykey->b_k = (blen > 1) ? hash&(blen-1) : 0;
}
}
/* Try to apply an augmenting list */
static int apply(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 *scramble, ub4 tail, int rollback)
// bstuff *tabb;
// hstuff *tabh;
// qstuff *tabq;
// ub4 blen;
// ub4 *scramble;
// ub4 tail;
// int rollback; /* FALSE applies augmenting path, TRUE rolls back */
{
ub4 hash;
key *mykey;
bstuff *pb;
ub4 child;
ub4 parent;
ub4 stabb; /* scramble[tab[b]] */
/* walk from child to parent */
for (child=tail-1; child; child=parent)
{
parent = tabq[child].parent_q; /* find child's parent */
pb = tabq[parent].b_q; /* find parent's list of siblings */
/* erase old hash values */
stabb = scramble[pb->val_b];
for (mykey=pb->list_b; mykey; mykey=mykey->nextb_k)
{
hash = mykey->a_k^stabb;
if (mykey == tabh[hash].key_h)
{ /* erase hash for all of child's siblings */
tabh[hash].key_h = (key *)0;
}
}
/* change pb->val_b, which will change the hashes of all parent siblings */
pb->val_b = (rollback ? tabq[child].oldval_q : tabq[child].newval_q);
/* set new hash values */
stabb = scramble[pb->val_b];
for (mykey=pb->list_b; mykey; mykey=mykey->nextb_k)
{
hash = mykey->a_k^stabb;
if (rollback)
{
if (parent == 0) continue; /* root never had a hash */
}
else if (tabh[hash].key_h)
{
/* very rare: roll back any changes */
apply(tabb, tabh, tabq, blen, scramble, tail, TRUE);
return FALSE; /* failure, collision */
}
tabh[hash].key_h = mykey;
}
}
return TRUE;
}
/*
-------------------------------------------------------------------------------
augment(): Add item to the mapping.
Construct a spanning tree of *b*s with *item* as root, where each
parent can have all its hashes changed (by some new val_b) with
at most one collision, and each child is the b of that collision.
I got this from Tarjan's "Data Structures and Network Algorithms". The
path from *item* to a *b* that can be remapped with no collision is
an "augmenting path". Change values of tab[b] along the path so that
the unmapped key gets mapped and the unused hash value gets used.
Assuming 1 key per b, if m out of n hash values are still unused,
you should expect the transitive closure to cover n/m nodes before
an unused node is found. Sum(i=1..n)(n/i) is about nlogn, so expect
this approach to take about nlogn time to map all single-key b's.
-------------------------------------------------------------------------------
*/
static int augment(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 *scramble, ub4 smax, bstuff *item, ub4 nkeys,
ub4 highwater)
// bstuff *tabb; /* stuff indexed by b */
// hstuff *tabh; /* which key is associated with which hash, indexed by hash */
// qstuff *tabq; /* queue of *b* values, this is the spanning tree */
// ub4 blen; /* length of tabb */
// ub4 *scramble; /* final hash is a^scramble[tab[b]] */
// ub4 smax; /* highest value in scramble */
// bstuff *item; /* &tabb[b] for the b to be mapped */
// ub4 nkeys; /* final hash must be in 0..nkeys-1 */
// ub4 highwater; /* a value higher than any now in tabb[].water_b */
{
ub4 q; /* current position walking through the queue */
ub4 tail; /* tail of the queue. 0 is the head of the queue. */
ub4 limit=UB1MAXVAL+1;
ub4 highhash = smax;
/* initialize the root of the spanning tree */
tabq[0].b_q = item;
tail = 1;
/* construct the spanning tree by walking the queue, add children to tail */
for (q=0; q<tail; ++q)
{
bstuff *myb = tabq[q].b_q; /* the b for this node */
ub4 i; /* possible value for myb->val_b */
if (q == 1)
break; /* don't do transitive closure */
for (i=0; i<limit; ++i)
{
bstuff *childb = (bstuff *)0; /* the b that this i maps to */
key *mykey; /* for walking through myb's keys */
for (mykey = myb->list_b; mykey; mykey=mykey->nextb_k)
{
key *childkey;
ub4 hash = mykey->a_k^scramble[i];
if (hash >= highhash) break; /* out of bounds */
childkey = tabh[hash].key_h;
if (childkey)
{
bstuff *hitb = &tabb[childkey->b_k];
if (childb)
{
if (childb != hitb) break; /* hit at most one child b */
}
else
{
childb = hitb; /* remember this as childb */
if (childb->water_b == highwater) break; /* already explored */
}
}
}
if (mykey) continue; /* myb with i has multiple collisions */
/* add childb to the queue of reachable things */
if (childb) childb->water_b = highwater;
tabq[tail].b_q = childb;
tabq[tail].newval_q = i; /* how to make parent (myb) use this hash */
tabq[tail].oldval_q = myb->val_b; /* need this for rollback */
tabq[tail].parent_q = q;
++tail;
if (!childb)
{ /* found an *i* with no collisions? */
/* try to apply the augmenting path */
if (apply(tabb, tabh, tabq, blen, scramble, tail, FALSE))
return TRUE; /* success, item was added to the perfect hash */
--tail; /* don't know how to handle such a child! */
}
}
}
return FALSE;
}
/* find a mapping that makes this a perfect hash */
static int perfect(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 smax, ub4 *scramble, ub4 nkeys)
{
ub4 maxkeys; /* maximum number of keys for any b */
ub4 i, j;
#ifdef SELOPT_DEBUG
fprintf(stderr, " blen %d smax %d nkeys %d\n", blen, smax, nkeys);
#endif
/* clear any state from previous attempts */
memset((void *)tabh, 0, sizeof(hstuff)*smax);
memset((void *)tabq, 0, sizeof(qstuff)*(blen+1));
for (maxkeys=0,i=0; i<blen; ++i)
if (tabb[i].listlen_b > maxkeys)
maxkeys = tabb[i].listlen_b;
/* In descending order by number of keys, map all *b*s */
for (j=maxkeys; j>0; --j)
for (i=0; i<blen; ++i)
if (tabb[i].listlen_b == j)
if (!augment(tabb, tabh, tabq, blen, scramble, smax, &tabb[i], nkeys,
i+1))
{
return FALSE;
}
/* Success! We found a perfect hash of all keys into 0..nkeys-1. */
return TRUE;
}
/* guess initial values for alen and blen */
static void initalen(ub4 *alen, ub4 *blen, ub4 smax, ub4 nkeys)
// ub4 *alen; /* output, initial alen */
// ub4 *blen; /* output, initial blen */
// ub4 smax; /* input, power of two greater or equal to max hash value */
// ub4 nkeys; /* number of keys being hashed */
{
/*
* Find initial *alen, *blen
* Initial alen and blen values were found empirically. Some factors:
*
* If smax<256 there is no scramble, so tab[b] needs to cover 0..smax-1.
*
* alen and blen must be powers of 2 because the values in 0..alen-1 and
* 0..blen-1 are produced by applying a bitmask to the initial hash function.
*
* alen must be less than smax, in fact less than nkeys, because otherwise
* there would often be no i such that a^scramble[i] is in 0..nkeys-1 for
* all the *a*s associated with a given *b*, so there would be no legal
* value to assign to tab[b]. This only matters when we're doing a minimal
* perfect hash.
*
* It takes around 800 trials to find distinct (a,b) with nkey=smax*(5/8)
* and alen*blen = smax*smax/32.
*
* Values of blen less than smax/4 never work, and smax/2 always works.
*
* We want blen as small as possible because it is the number of bytes in
* the huge array we must create for the perfect hash.
*
* When nkey <= smax*(5/8), blen=smax/4 works much more often with
* alen=smax/8 than with alen=smax/4. Above smax*(5/8), blen=smax/4
* doesn't seem to care whether alen=smax/8 or alen=smax/4. I think it
* has something to do with 5/8 = 1/8 * 5. For example examine 80000,
* 85000, and 90000 keys with different values of alen. This only matters
* if we're doing a minimal perfect hash.
*
* When alen*blen <= 1<<UB4BITS, the initial hash must produce one integer.
* Bigger than that it must produce two integers, which increases the
* cost of the hash per character hashed.
*/
*alen = smax; /* no reason to restrict alen to smax/2 */
*blen = ((nkeys <= smax*0.6) ? smax/16 :
(nkeys <= smax*0.8) ? smax/8 : smax/4);
if (*alen < 1) *alen = 1;
if (*blen < 1) *blen = 1;
#if SELOPT_DEBUG
fprintf(stderr, "alen %d blen %d smax %d nkeys %d\n", *alen, *blen, smax, nkeys);
#endif
}
/*
** Try to find a perfect hash function.
** Return the successful initializer for the initial hash.
** Return 0 if no perfect hash could be found.
*/
static int findhash(bstuff **tabb, ub4 *alen, ub4 *blen, ub8 *salt,
ub4 *scramble, ub4 smax, key *keys, ub4 nkeys)
// bstuff **tabb; /* output, tab[] of the perfect hash, length *blen */
// ub4 *alen; /* output, 0..alen-1 is range for a of (a,b) */
// ub4 *blen; /* output, 0..blen-1 is range for b of (a,b) */
// ub4 *salt; /* output, initializes initial hash */
// ub4 *scramble; /* input, hash = a^scramble[tab[b]] */
// ub4 smax; /* input, scramble[i] in 0..smax-1 */
// key *keys; /* input, keys to hash */
// ub4 nkeys; /* input, number of keys being hashed */
{
ub4 bad_initkey; /* how many times did initkey fail? */
ub4 bad_perfect; /* how many times did perfect fail? */
ub4 si; /* trial initializer for initial hash */
ub4 maxalen;
hstuff *tabh; /* table of keys indexed by hash value */
qstuff *tabq; /* table of stuff indexed by queue value, used by augment */
/* guess initial values for alen and blen */
initalen(alen, blen, smax, nkeys);
scrambleinit(scramble, smax);
maxalen = smax;
/* allocate working memory */
*tabb = new bstuff[*blen];
tabq = new qstuff[*blen+1];
tabh = new hstuff[smax];
/* Actually find the perfect hash */
*salt = 0;
bad_initkey = 0;
bad_perfect = 0;
for (si=1; ; ++si)
{
ub4 rslinit;
/* Try to find distinct (A,B) for all keys */
*salt = si * 0x9e3779b97f4a7c13LL; /* golden ratio (arbitrary value) */
initnorm(keys, nkeys, *alen, *blen, smax, *salt);
rslinit = inittab(*tabb, *blen, keys, nkeys, FALSE);
if (rslinit == 0)
{
/* didn't find distinct (a,b) */
if (++bad_initkey >= RETRY_INITKEY)
{
/* Try to put more bits in (A,B) to make distinct (A,B) more likely */
if (*alen < maxalen)
{
*alen *= 2;
}
else if (*blen < smax)
{
*blen *= 2;
delete[] tabq;
delete[] *tabb;
*tabb = new bstuff[*blen];
tabq = new qstuff[*blen+1];
}
bad_initkey = 0;
bad_perfect = 0;
}
continue; /* two keys have same (a,b) pair */
}
/* Given distinct (A,B) for all keys, build a perfect hash */
if (!perfect(*tabb, tabh, tabq, *blen, smax, scramble, nkeys))
{
if (++bad_perfect >= RETRY_PERFECT)
{
if (*blen < smax)
{
*blen *= 2;
delete[] *tabb;
delete[] tabq;
*tabb = new bstuff[*blen];
tabq = new qstuff[*blen+1];
--si; /* we know this salt got distinct (A,B) */
}
else
{
return 0;
}
bad_perfect = 0;
}
continue;
}
break;
}
/* free working memory */
delete[] tabh;
delete[] tabq;
return 1;
}
/*
------------------------------------------------------------------------------
Input/output type routines
------------------------------------------------------------------------------
*/
/* get the list of keys */
static void getkeys(key **keys, ub4 *nkeys, const string_map& strings)
{
key *buf = new key[strings.size()];
size_t i;
string_map::const_iterator s;
for (i = 0, s = strings.begin(); s != strings.end(); ++s, ++i) {
key *mykey = buf+i;
mykey->name_k = (ub1 *)s->first;
mykey->len_k = (ub4)strlen(s->first);
}
*keys = buf;
*nkeys = strings.size();
}
static perfect_hash
make_perfect(const string_map& strings)
{
ub4 nkeys; /* number of keys */
key *keys; /* head of list of keys */
bstuff *tab; /* table indexed by b */
ub4 smax; /* scramble[] values in 0..smax-1, a power of 2 */
ub4 alen; /* a in 0..alen-1, a power of 2 */
ub4 blen; /* b in 0..blen-1, a power of 2 */
ub8 salt; /* a parameter to the hash function */
ub4 scramble[SCRAMBLE_LEN]; /* used in final hash function */
int ok;
int i;
perfect_hash result;
/* read in the list of keywords */
getkeys(&keys, &nkeys, strings);
/* find the hash */