forked from davidm/lua-matrix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_matrix.lua
277 lines (248 loc) · 8.68 KB
/
test_matrix.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
local matrix = require "matrix"
local complex = require "complex"
local symbol = matrix.symbol
local mtx, m1,m2,m3,m4,m5, ms,ms1,ms2,ms3,ms4
-- test matrix:new/matrix call function
-- normal matrix
mtx = matrix {{1,2},{3,4}}
assert( tostring(mtx) == "1\t2\n3\t4" )
-- vector
mtx = matrix {1,2,3}
assert( tostring(mtx) == "1\n2\n3" )
-- matrix with size 2x2
mtx = matrix (2,2)
assert( tostring(mtx) == "0\t0\n0\t0" )
-- matrix with size 2x2 and default value 1/3
mtx = matrix (2,2,1/3)
assert( tostring(mtx) == "0.33333333333333\t0.33333333333333\n0.33333333333333\t0.33333333333333" )
-- identity matrix with size 2x2
mtx = matrix (2,"I")
assert( tostring(mtx) == "1\t0\n0\t1" )
-- matrix.add; number
m1 = matrix{{8,4,1},{6,8,3}}
m2 = matrix{{-8,1,3},{5,2,1}}
assert(m1 + m2 == matrix{{0,5,4},{11,10,4}})
-- matrix.add; complex
m1 = matrix{{10,"2+6i",1},{5,1,"4-2i"}}:replace(complex)
m2 = matrix{{3,4,5},{"2+3i",4,"6i"}}:replace(complex)
assert(m1 + m2 == matrix{{13,"6+6i",6},{"7+3i",5,"4+4i"}}:replace(complex))
-- matrix.add; symbol
m1 = matrix{{8,4,1},{6,8,3}}:replace(symbol)
m2 = matrix{{-8,1,3},{5,2,1}}:replace(symbol)
assert(m1 + m2 == matrix{{"8+-8","4+1","1+3"},{"6+5","8+2","3+1"}}:replace(symbol))
-- matrix.sub; number
m1 = matrix{{8,4,1},{6,8,3}}
m2 = matrix{{-8,1,3},{5,2,1}}
assert(m1 - m2 == matrix{{16,3,-2},{1,6,2}})
-- matrix.sub; complex
m1 = matrix{{10,"2+6i",1},{5,1,"4-2i"}}:replace(complex)
m2 = matrix{{3,4,5},{"2+3i",4,"6i"}}:replace(complex)
assert(m1 - m2 == matrix{{7,"-2+6i",-4},{"3-3i",-3,"4-8i"}}:replace(complex))
-- matrix.sub; symbol
m1 = matrix{{8,4,1},{6,8,3}}:replace(symbol)
m2 = matrix{{-8,1,3},{5,2,1}}:replace(symbol)
assert(m1 - m2 == matrix{{"8--8","4-1","1-3"},{"6-5","8-2","3-1"}}:replace(symbol))
-- matrix.mul; number
m1 = matrix{{8,4,1},{6,8,3}}
m2 = matrix{{3,1},{2,5},{7,4}}
assert(m1 * m2 == matrix{{39,32},{55,58}})
-- matrix.mul; complex
m1 = matrix{{"1+2i","3-i"},{"2-2i","1+i"}}:replace(complex)
m2 = matrix{{"i","5-i"},{2,"1-i"}}:replace(complex)
assert( m1*m2 == matrix{{"4-i","9+5i"},{"4+4i","10-12i"}}:replace(complex) )
-- matrix.mul; symbol
m1 = matrix{{8,4,1},{6,8,3}}:replace(symbol)
m2 = matrix{{3,1},{2,5},{7,4}}:replace(symbol)
assert(m1 * m2 == matrix{
{"(8)*(3)+(4)*(2)+(1)*(7)", "(8)*(1)+(4)*(5)+(1)*(4)"},
{"(6)*(3)+(8)*(2)+(3)*(7)", "(6)*(1)+(8)*(5)+(3)*(4)"}
}:replace(symbol))
-- matrix.div; number, same for complex, not for symbol
m1 = matrix {{1,2},{3,4}}
m2 = matrix {{4,5},{6,7}}
assert( m1*m2^-1 == m1/m2 )
-- matrix.divnum; number, same complex
m2 = matrix {{4,5},{6,7}}
assert( m2/2 == matrix{{2,2.5},{3,3.5}} )
mtx = matrix {{3,5,1},{2,4,5},{1,2,2}}
assert( 2 / mtx == matrix{{4,16,-42},{-2,-10,26},{0,2,-4}} )
-- matrix.mulnum; symbol
m1 = m1:replace(symbol)
assert( m1*2 == matrix{{"(1)*(2)","(2)*(2)"},{"(3)*(2)","(4)*(2)"}}:replace(symbol) )
assert( m1/2 == matrix{{"(1)/(2)","(2)/(2)"},{"(3)/(2)","(4)/(2)"}}:replace(symbol) )
-- matrix.pow; number, same complex
mtx = matrix{{3,5,1},{2,4,5},{1,2,2}}
assert(mtx^3 == matrix{{164,308,265},{161,303,263},{76,143,124}})
assert(mtx^1 == mtx)
assert(mtx^0 == matrix{{1,0,0},{0,1,0},{0,0,1}} )
assert(mtx^-1 == mtx:invert())
assert(mtx^-3 == (mtx^-1)^3)
mtx = matrix{{1,2,3},{1,2,3},{3,2,1}} -- singular
assert(mtx^-1 == nil)
local m1,rank = mtx:invert(); assert(m1 == nil and rank == 2)
mtx = matrix{{1,2},{3,4},{5,6}} -- non-square
assert(select(2, pcall(function() return mtx^-1 end))
:find("matrix not square"))
-- matrix.det; number
mtx = matrix {{1,4,3,2},{2,1,-1,-1},{-3,2,2,-2},{-1,-5,-4,1}}
assert( mtx:det() == 78 )
-- matrix.det; complex
m1 = matrix{{"1+2i","3-i"},{"2-2i","1+i"}}:replace(complex)
m2 = matrix{{"i","5-i"},{2,"1-i"}}:replace(complex)
m3 = m1*m2
-- (checked in maple)
assert( m3:det() == complex "12-114i" )
mtx = {{"2+3i","1+4i","-2i",3,2},
{"2i",3,"2+3i",0,3},
{3,"-2i",6,"4+5i",0},
{1,"1+2i",3,5,7},
{"-3+3i","3+3i",3,-8,2}}
mtx = matrix(mtx):replace(complex)
-- (checked in maple)
assert( mtx:det():round(10) == complex "5527+2687i" )
-- matrix.invert; number
--1
mtx = matrix{{3,5,1},{2,4,5},{1,2,2}}
local mtxinv = matrix{{2,8,-21},{-1,-5,13},{0,1,-2}}
assert( mtx^-1 == mtxinv )
--2
mtx = matrix{{1,0,2},{4,1,1},{3,2,-7}}
local mtxinv = matrix{{-9,4,-2},{31,-13,7},{5,-2,1}}
assert( mtx^-1 == mtxinv )
-- matrix.invert; complex
mtx = {
{ 3,"4-3i",1},
{3,"-1+5i",-3},
{4,0,7},
}
mtx = matrix.replace( mtx, complex )
local mtxinv = mtx^-1
local mtxinvcomp = {
{"0.13349-0.07005i","0.14335+0.03609i","0.04237+0.02547i"},
{"0.08771+0.10832i","-0.04519-0.0558i","-0.0319-0.03939i"},
{"-0.07628+0.04003i","-0.08192-0.02062i","0.11865-0.01456i"},}
mtxinvcomp = matrix( mtxinvcomp )
mtxinv:round( 5 )
mtxinv = mtxinv:elementstostrings()
assert( mtxinvcomp == mtxinv )
-- Fixed in v0.2.11 failed (Gauss-Jordan)
local mtx = matrix {{ 1, -1, 1 }, {-1, 1, 0 }, { 1, 0, 0 } }
assert((mtx^-1)^-1 == mtx)
-- Fixed in v0.2.11 failed (Gauss-Jordan)
local mtx = matrix {{ 0, 0, 1 }, { 0, 1, 0 }, { 1, 0, 0 } }
assert((mtx^-1)^-1 == mtx)
-- similar to above but with complex
local mtx = matrix.replace({{ 0, 0, "1i" }, { 0, "1i", 0 }, { "1i", 0, 0 } }, complex)
assert((mtx^-1)^-1 == mtx)
-- random
for i=1,10 do
local mtx = matrix(4, 4):random(-20, 20, 5)
assert(matrix.normmax((mtx^-1)^-1 - mtx) < 1E-13)
end
-- matrix.sqrt; number
local m1 = matrix{{4,2,1},{1,5,4},{1,5,2}}
local m2 = m1*m1
local msqrt = m2:sqrt()
assert((m2 - msqrt^2):normmax() < 1E-12)
-- matrix.sqrt; complex
local m1 = matrix{{4,"2+i",1},{1,5,"4-2i"},{1,"5+3i",2}}:replace(complex)
local m2 = m1*m1
local msqrt = m2:sqrt()
assert((m2 - msqrt^2):normmax() < 1E-12)
-- matrix.root; number
local p = 3
local m1 = matrix {{4,2,3},{1,9,7},{6,5,8}}
local m2 = m1^p
local mroot = m2:root(p)
assert((m2 - mroot^p):normmax() < 1E-7)
-- matrix.root; complex
local m1 = matrix{{4,"2+i",1},{1,5,"4-2i"},{1,"5+3i",2}}:replace(complex)
local m2 = m1^p
local mroot = m2:root(p)
assert((m2 - mroot^p):normmax() < 1E-7)
-- matrix.normf
mtx = matrix{{2,3},{-2,-3}}
assert(mtx:normf() == math.sqrt(2^2+3^2+2^2+3^2))
mtx = matrix{{'2i','3'},{'-2i','-3'}}:replace(complex)
assert(mtx:normf() == math.sqrt(2^2+3^2+2^2+3^2))
mtx = matrix{{'a','b'},{'c','d'}}:replace(symbol)
assert(tostring(mtx:normf()) == "(0+((a):abs())^(2)+((b):abs())^(2)+((c):abs())^(2)+((d):abs())^(2)):sqrt()")
-- matrix.normmax
-- note: symbolic matrices not supported
mtx = matrix{{2,3},{-2,-4}}
assert(mtx:normmax() == 4)
mtx = matrix{{'2i','3'},{'-2i','-4i'}}:replace(complex)
assert(mtx:normmax() == 4)
-- matrix.transpose
-- test transpose; number, same for all others
mtx = matrix{{3,5,1},{2,4,5},{1,2,2}}
assert(mtx^'T' == matrix{{3,2,1},{5,4,2},{1,5,2}})
-- matrix.rotl; number, same for all others
local m1 = matrix{{2,3},{4,5},{6,7}}
assert( m1:rotl() == matrix{{3,5,7},{2,4,6}} )
-- matris.rotr; number, same for all others
assert( m1:rotr() == matrix{{6,4,2},{7,5,3}} )
-- matrix.tostring; number
mtx = matrix{{4,2,-3},{3,-5,2}}
assert(tostring(mtx) == "4\t2\t-3\n3\t-5\t2" )
-- matrix.tostring; complex
mtx = matrix{{4,"2+i"},{"3-4i",5}}:replace(complex)
assert(tostring(mtx) == "4\t2+i\n3-4i\t5" )
-- matrix.tostring; tensor
local mt = matrix {{{1,2},{3,4}},{{5,6},{7,8}}}
assert( tostring(mt) == "[1,2]\t[3,4]\n[5,6]\t[7,8]" )
local i,j,k = mt:size()
assert( i == 2 ); assert( j == 2 );assert( k == 2 )
-- matrix.latex; tensor
local mt = matrix {{{1,2},{3,4}},{{5,6},{7,8}}}
assert( mt:latex() == "$\\left( \\begin{array}{cc}\n\t[1,2] & [3,4] \\\\\n\t[5,6] & [7,8]\n\\end{array} \\right)$" )
-- matrix.cross
local e1 = matrix{ 1,0,0 }
local e2 = matrix{ 0,1,0 }
local e3 = e1:cross( e2 )
assert( e3 == matrix{ 0,0,1 } )
-- matrix.scalar
local v1 = matrix{ 2,3,0, }
local v2 = matrix{ 0,3,4 }
local vx = v1:cross( v2 )
assert( v1:scalar( vx ) == 0 )
assert( vx:scalar( v2 ) == 0 )
-- matrix.len
assert( v2:len() == math.sqrt( 3^2+4^2 ) )
--// test symbolic
ms = matrix {{ "a",1 },{2,"b"}}:replace(symbol)
ms2 = matrix {{ "a",2 },{"b",3}}:replace(symbol)
ms3 = ms2+ms
ms3 = ms3:replace( symbol.makereplacer( "a",4,"b",2 ) )
ms3 = ms3:solve()
assert( ms3 == matrix {{8,3},{4,5}} )
ms4 = ms2*ms
ms4 = ms4:replace( symbol.makereplacer( "a",4,"b",2 ) )
ms4 = ms4:solve()
assert( ms4 == matrix {{20,8},{14,8}} )
-- __unm
mtx = matrix{{4,2},{3,5}}
assert(-mtx == matrix{{-4,-2},{-3,-5}})
-- test inverted with big table
--[[mtx = matrix:new( 100,100 )
mtx:random( -100,100 )
--mtx:print()
t1 = os.clock()
identm = mtx*mtx^-1
print("Diff:",os.clock()-t1 )
-- round to 8 decimal points
-- this depends on the numbers used, small, big, range
-- the average error in this calculation was 10^-9
identm:round( 8 )
--identm:print()
ident = matrix:new( 100, "I" )
assert( identm == ident )--]]
local t = {}
for i,v in pairs( matrix ) do
table.insert( t, i )
end
table.sort( t )
for i,v in ipairs( t ) do
--print( "matrix."..v )
end
print 'PASSED'