forked from sammy-tri/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
symbolic_generic_polynomial.h
561 lines (483 loc) · 18.8 KB
/
symbolic_generic_polynomial.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
#pragma once
#ifndef DRAKE_COMMON_SYMBOLIC_HEADER
#error Do not directly include this file. Include "drake/common/symbolic.h".
#endif
#include <map>
#include <ostream>
#include <Eigen/Core>
#include <fmt/format.h>
#include "drake/common/drake_copyable.h"
#include "drake/common/symbolic.h"
namespace drake {
namespace symbolic {
/**
* Represents symbolic generic polynomials using a given basis (for example,
* monomial basis, Chebyshev basis, etc). A generic symbolic polynomial keeps a
* mapping from a basis element of indeterminates to its coefficient in a
* symbolic expression. A generic polynomial `p` has to satisfy an invariant
* such that `p.decision_variables() ∩ p.indeterminates() = ∅`. We have
* CheckInvariant() method to check the invariant.
* For polynomials using different basis, you could refer to section 3.1.5 of
* Semidefinite Optimization and Convex Algebraic Geometry on the pros/cons of
* each basis.
*
* We provide two instantiations of this template
* - BasisElement = MonomialBasisElement
* - BasisElement = ChebyshevBasisElement
* @tparam BasisElement Must be a subclass of PolynomialBasisElement.
*/
template <typename BasisElement>
class GenericPolynomial {
public:
static_assert(
std::is_base_of_v<PolynomialBasisElement, BasisElement>,
"BasisElement should be a derived class of PolynomialBasisElement");
/** Type of mapping from basis element to coefficient */
using MapType = std::map<BasisElement, Expression>;
/** Constructs a zero polynomial. */
GenericPolynomial() = default;
DRAKE_DEFAULT_COPY_AND_MOVE_AND_ASSIGN(GenericPolynomial)
/** Constructs a default value. This overload is used by Eigen when
* EIGEN_INITIALIZE_MATRICES_BY_ZERO is enabled.
*/
explicit GenericPolynomial(std::nullptr_t)
: GenericPolynomial<BasisElement>() {}
/** Constructs a generic polynomial from a map, basis_element → coefficient.
* For example
* @code{cc}
* GenericPolynomial<MonomialBasiElement>(
* {{MonomialBasisElement(x, 2), a}, {MonomialBasisElement(x, 3), a+b}})
* @endcode
* constructs a polynomial ax²+(a+b)x³.*/
explicit GenericPolynomial(MapType init);
/** Constructs a generic polynomial from a single basis element @p m.
* @note that all variables in `m` are considered as indeterminates. Namely
* the constructed generic polynomial contains the map with a single key `m`,
* with the coefficient being 1.
*/
// Note that this implicit conversion is desirable to have a dot product of
// two Eigen::Vector<BasisElement>s return a GenericPolynomial<BasisElement>.
// NOLINTNEXTLINE(runtime/explicit)
GenericPolynomial(const BasisElement& m);
/** Constructs a polynomial from an expression @p e. Note that all variables
* in `e` are considered as indeterminates.
*
* @throws std::exception if @p e is not a polynomial.
*/
explicit GenericPolynomial(const Expression& e);
/** Constructs a polynomial from an expression @p e by decomposing it with
* respect to @p indeterminates.
*
* @note The indeterminates for the polynomial are @p indeterminates. Even if
* a variable in @p indeterminates does not show up in @p e, that variable is
* still registered as an indeterminate in this polynomial, as
* this->indeterminates() be the same as @p indeterminates.
*
* @throws std::exception if @p e is not a polynomial in @p
* indeterminates.
*/
GenericPolynomial(const Expression& e, Variables indeterminates);
/** Returns the indeterminates of this generic polynomial. */
[[nodiscard]] const Variables& indeterminates() const {
return indeterminates_;
}
/** Returns the decision variables of this generic polynomial. */
[[nodiscard]] const Variables& decision_variables() const {
return decision_variables_;
}
/** Sets the indeterminates to `new_indeterminates`.
*
* Changing the indeterminates will change
* `basis_element_to_coefficient_map()`, and also potentially the degree of
* the polynomial. Here is an example.
*
* @code
* // p is a quadratic polynomial with x being the only indeterminate.
* symbolic::GenericPolynomial<MonomialBasisElement> p(a * x * x + b * x + c,
* {x});
* // p.basis_element_to_coefficient_map() contains {1: c, x: b, x*x:a}.
* std::cout << p.TotalDegree(); // prints 2.
* // Now set (a, b, c) to the indeterminates. p becomes a linear
* // polynomial of a, b, c.
* p.SetIndeterminates({a, b, c});
* // p.basis_element_to_coefficient_map() now is {a: x * x, b: x, c: 1}.
* std::cout << p.TotalDegree(); // prints 1.
* @endcode
* This function can be expensive, as it potentially reconstructs the
* polynomial (using the new indeterminates) from the expression.
*/
void SetIndeterminates(const Variables& new_indeterminates);
/** Returns the map from each basis element to its coefficient. */
[[nodiscard]] const MapType& basis_element_to_coefficient_map() const {
return basis_element_to_coefficient_map_;
}
/** Returns the highest degree of this generic polynomial in an indeterminate
* @p v. */
[[nodiscard]] int Degree(const Variable& v) const;
/** Returns the total degree of this generic polynomial. */
[[nodiscard]] int TotalDegree() const;
/** Returns an equivalent symbolic expression of this generic polynomial.*/
[[nodiscard]] Expression ToExpression() const;
/**
* Differentiates this generic polynomial with respect to the variable @p x.
* Note that a variable @p x can be either a decision variable or an
* indeterminate.
*/
[[nodiscard]] GenericPolynomial<BasisElement> Differentiate(
const Variable& x) const;
/** Computes the Jacobian matrix J of the generic polynomial with respect to
* @p vars. J(0,i) contains ∂f/∂vars(i). @p vars should be an Eigen column
* vector of symbolic variables.
*/
template <typename Derived>
Eigen::Matrix<GenericPolynomial<BasisElement>, 1, Derived::RowsAtCompileTime>
Jacobian(const Eigen::MatrixBase<Derived>& vars) const {
static_assert(
std::is_same_v<typename Derived::Scalar, Variable> &&
(Derived::ColsAtCompileTime == 1),
"The argument of GenericPolynomial::Jacobian() should be a vector of "
"symbolic variables.");
const VectorX<Expression>::Index n{vars.size()};
Eigen::Matrix<GenericPolynomial<BasisElement>, 1,
Derived::RowsAtCompileTime>
J{n};
for (VectorX<Expression>::Index i = 0; i < n; ++i) {
J(i) = this->Differentiate(vars(i));
}
return J;
}
/**
* Evaluates this generic polynomial under a given environment @p env.
*
* @throws std::exception if there is a variable in this generic
* polynomial whose assignment is not provided by @p env.
*/
[[nodiscard]] double Evaluate(const Environment& env) const;
/** Partially evaluates this generic polynomial using an environment @p env.
*
* @throws std::exception if NaN is detected during evaluation.
*/
[[nodiscard]] GenericPolynomial<BasisElement> EvaluatePartial(
const Environment& env) const;
/** Partially evaluates this generic polynomial by substituting @p var with @p
* c.
* @throws std::exception if NaN is detected at any point during
* evaluation.
*/
[[nodiscard]] GenericPolynomial<BasisElement> EvaluatePartial(
const Variable& var, double c) const;
/** Adds @p coeff * @p m to this generic polynomial. */
GenericPolynomial<BasisElement>& AddProduct(const Expression& coeff,
const BasisElement& m);
/** Removes the terms whose absolute value of the coefficients are smaller
* than or equal to @p coefficient_tol.
* For example, if the generic polynomial is 2x² + 3xy + 10⁻⁴x - 10⁻⁵,
* then after calling RemoveTermsWithSmallCoefficients(1e-3), the returned
* polynomial becomes 2x² + 3xy.
* @param coefficient_tol A positive scalar.
* @retval polynomial_cleaned A generic polynomial whose terms with small
* coefficients are removed.
*/
[[nodiscard]] GenericPolynomial<BasisElement>
RemoveTermsWithSmallCoefficients(double coefficient_tol) const;
GenericPolynomial<BasisElement>& operator+=(
const GenericPolynomial<BasisElement>& p);
GenericPolynomial<BasisElement>& operator+=(const BasisElement& m);
GenericPolynomial<BasisElement>& operator+=(double c);
GenericPolynomial<BasisElement>& operator+=(const Variable& v);
GenericPolynomial<BasisElement>& operator-=(
const GenericPolynomial<BasisElement>& p);
GenericPolynomial<BasisElement>& operator-=(const BasisElement& m);
GenericPolynomial<BasisElement>& operator-=(double c);
GenericPolynomial<BasisElement>& operator-=(const Variable& v);
GenericPolynomial<BasisElement>& operator*=(
const GenericPolynomial<BasisElement>& p);
GenericPolynomial<BasisElement>& operator*=(const BasisElement& m);
GenericPolynomial<BasisElement>& operator*=(double c);
GenericPolynomial<BasisElement>& operator*=(const Variable& v);
GenericPolynomial<BasisElement>& operator/=(double c);
/** Returns true if this and @p p are structurally equal.
*/
[[nodiscard]] bool EqualTo(const GenericPolynomial<BasisElement>& p) const;
/** Returns true if this generic polynomial and @p p are equal after expanding
* the coefficients. */
[[nodiscard]] bool EqualToAfterExpansion(
const GenericPolynomial<BasisElement>& p) const;
/** Returns true if this polynomial and @p p are almost equal (the difference
* in the corresponding coefficients are all less than @p tol), after
* expanding the coefficients.
*/
bool CoefficientsAlmostEqual(const GenericPolynomial<BasisElement>& p,
double tol) const;
/** Returns a symbolic formula representing the condition where this
* polynomial and @p p are the same.
*/
Formula operator==(const GenericPolynomial<BasisElement>& p) const;
/** Returns a symbolic formula representing the condition where this
* polynomial and @p p are not the same.
*/
Formula operator!=(const GenericPolynomial<BasisElement>& p) const;
/** Implements the @ref hash_append concept. */
template <class HashAlgorithm>
friend void hash_append(
HashAlgorithm& hasher,
const GenericPolynomial<BasisElement>& item) noexcept {
using drake::hash_append;
for (const auto& [basis_element, coeff] :
item.basis_element_to_coefficient_map_) {
hash_append(hasher, basis_element);
hash_append(hasher, coeff);
}
}
private:
// Throws std::exception if there is a variable appeared in both of
// decision_variables() and indeterminates().
void CheckInvariant() const;
MapType basis_element_to_coefficient_map_;
Variables indeterminates_;
Variables decision_variables_;
};
/** Defines an explicit SFINAE alias for use with return types to dissuade CTAD
* from trying to instantiate an invalid GenericElement<> for operator
* overloads, (if that's actually the case).
* See discussion for more info:
* https://github.com/robotlocomotion/drake/pull/14053#pullrequestreview-488744679
*/
template <typename BasisElement>
using GenericPolynomialEnable = std::enable_if_t<
std::is_base_of_v<PolynomialBasisElement, BasisElement>,
GenericPolynomial<BasisElement>>;
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator-(const GenericPolynomial<BasisElement>& p) {
return -1. * p;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator+(GenericPolynomial<BasisElement> p1,
const GenericPolynomial<BasisElement>& p2) {
return p1 += p2;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator+(GenericPolynomial<BasisElement> p, const BasisElement& m) {
return p += m;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator+(GenericPolynomial<BasisElement> p, double c) {
return p += c;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator+(const BasisElement& m, GenericPolynomial<BasisElement> p) {
return p += m;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator+(const BasisElement& m1, const BasisElement& m2) {
return GenericPolynomial<BasisElement>(m1) + m2;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator+(const BasisElement& m, double c) {
return GenericPolynomial<BasisElement>(m) + c;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator+(double c, GenericPolynomial<BasisElement> p) {
return p += c;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator+(double c, const BasisElement& m) {
return GenericPolynomial<BasisElement>(m) + c;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator+(GenericPolynomial<BasisElement> p, const Variable& v) {
return p += v;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator+(const Variable& v, GenericPolynomial<BasisElement> p) {
return p += v;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator-(GenericPolynomial<BasisElement> p1,
const GenericPolynomial<BasisElement>& p2) {
return p1 -= p2;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator-(GenericPolynomial<BasisElement> p, const BasisElement& m) {
return p -= m;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator-(GenericPolynomial<BasisElement> p, double c) {
return p -= c;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator-(const BasisElement& m, GenericPolynomial<BasisElement> p) {
return p = -1 * p + m;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator-(const BasisElement& m1, const BasisElement& m2) {
return GenericPolynomial<BasisElement>(m1) - m2;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator-(const BasisElement& m, double c) {
return GenericPolynomial<BasisElement>(m) - c;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator-(double c, GenericPolynomial<BasisElement> p) {
return p = -p + c;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator-(double c, const BasisElement& m) {
return c - GenericPolynomial<BasisElement>(m);
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator-(GenericPolynomial<BasisElement> p, const Variable& v) {
return p -= v;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator-(const Variable& v, GenericPolynomial<BasisElement> p) {
return GenericPolynomial<BasisElement>(v, p.indeterminates()) - p;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator*(GenericPolynomial<BasisElement> p1,
const GenericPolynomial<BasisElement>& p2) {
return p1 *= p2;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator*(GenericPolynomial<BasisElement> p, const BasisElement& m) {
return p *= m;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator*(GenericPolynomial<BasisElement> p, double c) {
return p *= c;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator*(const BasisElement& m, GenericPolynomial<BasisElement> p) {
return p *= m;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator*(const BasisElement& m, double c) {
return GenericPolynomial<BasisElement>(m) * c;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator*(double c, GenericPolynomial<BasisElement> p) {
return p *= c;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator*(double c, const BasisElement& m) {
return GenericPolynomial<BasisElement>(m) * c;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator*(GenericPolynomial<BasisElement> p, const Variable& v) {
return p *= v;
}
template <typename BasisElement>
GenericPolynomialEnable<BasisElement>
operator*(const Variable& v, GenericPolynomial<BasisElement> p) {
return p *= v;
}
/** Returns `p / v`. */
template <typename BasisElement>
GenericPolynomialEnable<BasisElement> operator/(
GenericPolynomial<BasisElement> p, double v) {
return p /= v;
}
/** Returns polynomial @p raised to @p n.
* @param p The base polynomial.
* @param n The exponent of the power. @pre n>=0.
* */
template <typename BasisElement>
GenericPolynomialEnable<BasisElement> pow(
const GenericPolynomial<BasisElement>& p, int n) {
if (n < 0) {
throw std::runtime_error(
fmt::format("pow(): the degree should be non-negative, got {}.", n));
} else if (n == 0) {
return GenericPolynomial<BasisElement>(BasisElement());
} else if (n == 1) {
return p;
} else if (n % 2 == 0) {
const GenericPolynomial<BasisElement> half = pow(p, n / 2);
return half * half;
} else {
const GenericPolynomial<BasisElement> half = pow(p, n / 2);
return half * half * p;
}
}
template <typename BasisElement>
std::ostream& operator<<(std::ostream& os,
const GenericPolynomial<BasisElement>& p) {
const typename GenericPolynomial<BasisElement>::MapType& map{
p.basis_element_to_coefficient_map()};
if (map.empty()) {
return os << 0;
}
auto it = map.begin();
os << it->second << "*" << it->first;
for (++it; it != map.end(); ++it) {
os << " + " << it->second << "*" << it->first;
}
return os;
}
extern template class GenericPolynomial<MonomialBasisElement>;
extern template class GenericPolynomial<ChebyshevBasisElement>;
} // namespace symbolic
} // namespace drake
namespace std {
/* Provides std::hash<drake::symbolic::GenericPolynomial<BasisElement>>. */
template <typename BasisElement>
struct hash<drake::symbolic::GenericPolynomial<BasisElement>>
: public drake::DefaultHash {};
#if defined(__GLIBCXX__)
// Inform GCC that this hash function is not so fast (i.e. for-loop inside).
// This will enforce caching of hash results. See
// https://gcc.gnu.org/onlinedocs/libstdc++/manual/unordered_associative.html
// for details.
template <typename BasisElement>
struct __is_fast_hash<hash<drake::symbolic::GenericPolynomial<BasisElement>>>
: std::false_type {};
#endif
} // namespace std
#if !defined(DRAKE_DOXYGEN_CXX)
namespace Eigen {
// Defines Eigen traits needed for Matrix<drake::symbolic::Polynomial>.
template <>
struct NumTraits<
drake::symbolic::GenericPolynomial<drake::symbolic::MonomialBasisElement>>
: GenericNumTraits<drake::symbolic::GenericPolynomial<
drake::symbolic::MonomialBasisElement>> {
static inline int digits10() { return 0; }
};
template <>
struct NumTraits<
drake::symbolic::GenericPolynomial<drake::symbolic::ChebyshevBasisElement>>
: GenericNumTraits<drake::symbolic::GenericPolynomial<
drake::symbolic::ChebyshevBasisElement>> {
static inline int digits10() { return 0; }
};
} // namespace Eigen
#endif // !defined(DRAKE_DOXYGEN_CXX)