forked from sammy-tri/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymbolic_rational_function_test.cc
399 lines (366 loc) · 17.7 KB
/
symbolic_rational_function_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#include <gtest/gtest.h>
#include "drake/common/symbolic.h"
#include "drake/common/test_utilities/expect_throws_message.h"
#include "drake/common/test_utilities/symbolic_test_util.h"
namespace drake {
namespace symbolic {
namespace {
using test::PolyEqual;
using test::RationalFunctionEqual;
class SymbolicRationalFunctionTest : public ::testing::Test {
protected:
const Variable var_x_{"x"};
const Variable var_y_{"y"};
const Variable var_z_{"z"};
const Variable var_a_{"a"};
const Variable var_b_{"b"};
const Variable var_c_{"c"};
const Variables var_xy_{var_x_, var_y_};
const Variables var_xyz_{var_x_, var_y_, var_z_};
const Variables var_abc_{var_a_, var_b_, var_c_};
const Polynomial polynomial_zero_{0};
const Polynomial polynomial_one_{1};
const Polynomial p1_{var_x_ * var_x_ * 2 + var_y_, var_xy_};
const Polynomial p2_{var_x_ * var_x_ + 2 * var_y_};
const Polynomial p3_{var_a_ * var_x_ + var_b_ + var_y_, var_xy_};
const Polynomial p4_{2 * var_a_ * var_x_ + var_b_ + var_x_ * var_y_, var_xy_};
// Both var_a_ and var_x_ are indeterminates in p5, p6.
const Polynomial p5_{var_a_ * var_x_};
const Polynomial p6_{var_a_ * var_x_ + var_y_};
const std::string polynomial_invariant_error_{
"Polynomial .* does not satisfy the invariant [^]*"};
const std::string rational_function_indeterminates_error_{
"RationalFunction .* is invalid.[^]*"};
};
TEST_F(SymbolicRationalFunctionTest, DefaultConstructor) {
const RationalFunction p;
EXPECT_PRED2(PolyEqual, p.numerator(), polynomial_zero_);
EXPECT_PRED2(PolyEqual, p.denominator(), polynomial_one_);
}
TEST_F(SymbolicRationalFunctionTest, Constructor) {
RationalFunction f(polynomial_zero_, polynomial_one_);
EXPECT_PRED2(PolyEqual, f.numerator(), polynomial_zero_);
EXPECT_PRED2(PolyEqual, f.denominator(), polynomial_one_);
const symbolic::Polynomial p1(var_x_ * var_a_, {var_x_});
const symbolic::Polynomial p2(var_a_ * var_x_ * var_x_ + var_y_, var_xy_);
RationalFunction f_p1_p2(p1, p2);
EXPECT_PRED2(PolyEqual, f_p1_p2.numerator(), p1);
EXPECT_PRED2(PolyEqual, f_p1_p2.denominator(), p2);
}
TEST_F(SymbolicRationalFunctionTest, ConstructorWithPolynomial) {
// Constructor with numerator only.
RationalFunction f1(p1_);
EXPECT_PRED2(PolyEqual, f1.numerator(), p1_);
EXPECT_PRED2(PolyEqual, f1.denominator(), polynomial_one_);
}
TEST_F(SymbolicRationalFunctionTest, ConstructorWithDouble) {
// Constructor with a double scalar.
const double c = 5;
RationalFunction f1(c);
EXPECT_PRED2(PolyEqual, f1.numerator(), c * polynomial_one_);
EXPECT_PRED2(PolyEqual, f1.denominator(), polynomial_one_);
}
TEST_F(SymbolicRationalFunctionTest, ConstructorWithError) {
// Test throwing error in the constructor.
// Denominator is 0.
DRAKE_EXPECT_THROWS_MESSAGE(
RationalFunction(polynomial_one_, polynomial_zero_),
"RationalFunction: the denominator should not be 0.");
// The indeterminate in the denominator is a decision variable in the
// numerator.
const Polynomial p1(var_x_ * var_a_, {var_x_});
const Polynomial p2(var_x_ * var_b_ + var_y_, {var_b_, var_y_});
if (kDrakeAssertIsArmed) {
DRAKE_EXPECT_THROWS_MESSAGE(
RationalFunction(p2, p1),
"[^]* are used as decision variables in the numerator [^]*");
}
// The indeterminate in the numerator is a decision variable in the
// denominator.
const symbolic::Polynomial p3(var_x_ * var_y_, {var_y_});
if (kDrakeAssertIsArmed) {
DRAKE_EXPECT_THROWS_MESSAGE(
RationalFunction(p1, p3),
"[^]* are used as indeterminates in the numerator [^]*");
}
if (kDrakeAssertIsArmed) {
DRAKE_EXPECT_THROWS_MESSAGE(
RationalFunction(Polynomial(var_a_ * var_x_, {var_x_}),
Polynomial(var_a_ * var_x_, {var_a_})),
"[^]* are used as indeterminates in the numerator [^]* are used as "
"decision variables in the numerator [^]*");
}
}
TEST_F(SymbolicRationalFunctionTest, EqualTo) {
const Polynomial p1(var_x_ * var_x_ + var_y_);
const Polynomial p2(var_x_ + var_y_);
const RationalFunction f(p1, p2);
EXPECT_TRUE(f.EqualTo(RationalFunction(p1, p2)));
EXPECT_FALSE(f.EqualTo(RationalFunction(2 * p1, 2 * p2)));
EXPECT_FALSE(f.EqualTo(RationalFunction(p1, 2 * p2)));
EXPECT_FALSE(f.EqualTo(RationalFunction(2 * p1, p2)));
}
TEST_F(SymbolicRationalFunctionTest, OperatorEqual) {
EXPECT_EQ(RationalFunction(p1_, p2_), RationalFunction(p1_, p2_));
EXPECT_EQ(RationalFunction(p1_, p2_), RationalFunction(2 * p1_, 2 * p2_));
}
TEST_F(SymbolicRationalFunctionTest, OperatorNotEqual) {
EXPECT_NE(RationalFunction(p1_, p2_), RationalFunction(p1_ + 1, p2_));
EXPECT_NE(RationalFunction(p1_, p2_), RationalFunction(p1_, p2_ + 1));
}
TEST_F(SymbolicRationalFunctionTest, UnaryMinus) {
const Polynomial p1(var_x_ * var_x_ * 2 + var_y_);
const Polynomial p2(var_x_ * var_x_ + 2 * var_y_);
const RationalFunction f(p1, p2);
const RationalFunction f_minus = -f;
EXPECT_PRED2(PolyEqual, -f_minus.numerator(), p1);
EXPECT_PRED2(PolyEqual, f_minus.denominator(), p2);
}
TEST_F(SymbolicRationalFunctionTest, Addition) {
const RationalFunction f1(p1_, p2_);
const RationalFunction f2(p3_, p4_);
const RationalFunction f1_f2_sum_expected(p1_ * p4_ + p2_ * p3_, p2_ * p4_);
EXPECT_PRED2(RationalFunctionEqual, f1 + f2, f1_f2_sum_expected);
EXPECT_PRED2(RationalFunctionEqual, f2 + f1, f1_f2_sum_expected);
RationalFunction f1_f2_sum(p1_, p2_);
f1_f2_sum += f2;
EXPECT_PRED2(RationalFunctionEqual, f1_f2_sum, f1_f2_sum_expected);
// p5, p6 contains variable a in its indeterminates.
const RationalFunction f3(p1_, p3_);
if (kDrakeAssertIsArmed) {
DRAKE_EXPECT_THROWS_MESSAGE(f3 + RationalFunction(p5_, p6_),
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(f3 + RationalFunction(p5_, p2_),
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(f3 + RationalFunction(p2_, p5_),
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p6_) + f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p2_) + f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p2_, p5_) + f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p6_) += f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p2_) += f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p2_, p5_) += f3,
polynomial_invariant_error_);
}
const RationalFunction f1_p3_sum_expected(p1_ + p2_ * p3_, p2_);
EXPECT_PRED2(RationalFunctionEqual, f1 + p3_, f1_p3_sum_expected);
EXPECT_PRED2(RationalFunctionEqual, p3_ + f1, f1_p3_sum_expected);
RationalFunction f1_p3_sum(p1_, p2_);
f1_p3_sum += p3_;
EXPECT_PRED2(RationalFunctionEqual, f1_p3_sum, f1_p3_sum_expected);
// p5 contains variable a in its indeterminates.
if (kDrakeAssertIsArmed) {
DRAKE_EXPECT_THROWS_MESSAGE(f3 + p5_,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(p5_ + f3,
polynomial_invariant_error_);
}
const double c = 2;
const RationalFunction f1_c_sum_expected(p1_ + c * p2_, p2_);
EXPECT_PRED2(RationalFunctionEqual, f1 + c, f1_c_sum_expected);
EXPECT_PRED2(RationalFunctionEqual, c + f1, f1_c_sum_expected);
RationalFunction f1_c_sum(p1_, p2_);
f1_c_sum += c;
EXPECT_PRED2(RationalFunctionEqual, f1_c_sum, f1_c_sum_expected);
}
TEST_F(SymbolicRationalFunctionTest, Subtraction) {
const RationalFunction f1(p1_, p2_);
const RationalFunction f2(p3_, p4_);
const RationalFunction f1_minus_f2_expected(p1_ * p4_ - p2_ * p3_, p2_ * p4_);
EXPECT_PRED2(RationalFunctionEqual, f1 - f2, f1_minus_f2_expected);
EXPECT_PRED2(RationalFunctionEqual, f2 - f1, -f1_minus_f2_expected);
RationalFunction f1_minus_f2 = f1;
f1_minus_f2 -= f2;
EXPECT_PRED2(RationalFunctionEqual, f1_minus_f2, f1_minus_f2_expected);
// p5, p6 contains variable a in its indeterminates.
const RationalFunction f3(p1_, p3_);
if (kDrakeAssertIsArmed) {
DRAKE_EXPECT_THROWS_MESSAGE(f3 - RationalFunction(p5_, p6_),
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(f3 - RationalFunction(p5_, p2_),
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(f3 - RationalFunction(p2_, p5_),
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p6_) - f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p2_) - f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p2_, p5_) - f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p6_) -= f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p2_) -= f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p2_, p5_) -= f3,
polynomial_invariant_error_);
}
const RationalFunction f1_minus_p3_expected(p1_ - p2_ * p3_, p2_);
EXPECT_PRED2(RationalFunctionEqual, f1 - p3_, f1_minus_p3_expected);
EXPECT_PRED2(RationalFunctionEqual, p3_ - f1, -f1_minus_p3_expected);
RationalFunction f1_minus_p3 = f1;
f1_minus_p3 -= p3_;
EXPECT_PRED2(RationalFunctionEqual, f1_minus_p3, f1_minus_p3_expected);
// p5 contains variable a in its indeterminates.
if (kDrakeAssertIsArmed) {
DRAKE_EXPECT_THROWS_MESSAGE(f3 - p5_,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(p5_ - f3,
polynomial_invariant_error_);
}
const double c = 2;
const RationalFunction f1_minus_c_expected(p1_ - p2_ * c, p2_);
EXPECT_PRED2(RationalFunctionEqual, f1 - c, f1_minus_c_expected);
EXPECT_PRED2(RationalFunctionEqual, c - f1, -f1_minus_c_expected);
RationalFunction f1_minus_c = f1;
f1_minus_c -= c;
EXPECT_PRED2(RationalFunctionEqual, f1_minus_c, f1_minus_c_expected);
}
TEST_F(SymbolicRationalFunctionTest, Product) {
const RationalFunction f1(p1_, p2_);
const RationalFunction f2(p3_, p4_);
const RationalFunction f1_times_f2_expected(p1_ * p3_, p2_ * p4_);
EXPECT_PRED2(RationalFunctionEqual, f1 * f2, f1_times_f2_expected);
EXPECT_PRED2(RationalFunctionEqual, f2 * f1, f1_times_f2_expected);
RationalFunction f1_times_f2 = f1;
f1_times_f2 *= f2;
EXPECT_PRED2(RationalFunctionEqual, f1_times_f2, f1_times_f2_expected);
// p5, p6 contains variable a in its indeterminates.
const RationalFunction f3(p1_, p3_);
if (kDrakeAssertIsArmed) {
DRAKE_EXPECT_THROWS_MESSAGE(f3 * RationalFunction(p5_, p6_),
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(f3 * RationalFunction(p5_, p2_),
rational_function_indeterminates_error_);
DRAKE_EXPECT_THROWS_MESSAGE(f3 * RationalFunction(p2_, p5_),
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p6_) * f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p2_) * f3,
rational_function_indeterminates_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p2_, p5_) * f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p6_) *= f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p2_) *= f3,
rational_function_indeterminates_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p2_, p5_) *= f3,
polynomial_invariant_error_);
}
const RationalFunction f1_times_p3_expected(p1_ * p3_, p2_);
EXPECT_PRED2(RationalFunctionEqual, f1 * p3_, f1_times_p3_expected);
EXPECT_PRED2(RationalFunctionEqual, p3_ * f1, f1_times_p3_expected);
RationalFunction f1_times_p3 = f1;
f1_times_p3 *= p3_;
EXPECT_PRED2(RationalFunctionEqual, f1_times_p3, f1_times_p3_expected);
// p5 contains variable a in its indeterminates.
if (kDrakeAssertIsArmed) {
DRAKE_EXPECT_THROWS_MESSAGE(f3 * p5_,
rational_function_indeterminates_error_);
DRAKE_EXPECT_THROWS_MESSAGE(p5_ * f3,
rational_function_indeterminates_error_);
}
const double c = 2;
const RationalFunction f1_times_c_expected(p1_ * c, p2_);
EXPECT_PRED2(RationalFunctionEqual, f1 * c, f1_times_c_expected);
EXPECT_PRED2(RationalFunctionEqual, c * f1, f1_times_c_expected);
RationalFunction f1_times_c = f1;
f1_times_c *= c;
EXPECT_PRED2(RationalFunctionEqual, f1_times_c, f1_times_c_expected);
}
TEST_F(SymbolicRationalFunctionTest, Division) {
const RationalFunction f1(p1_, p2_);
const RationalFunction f2(p3_, p4_);
const RationalFunction f1_divides_f2_expected(p3_ * p2_, p1_ * p4_);
EXPECT_PRED2(RationalFunctionEqual, f2 / f1, f1_divides_f2_expected);
EXPECT_PRED2(RationalFunctionEqual, f1 / f2, 1 / f1_divides_f2_expected);
RationalFunction f1_divides_f2 = f2;
f1_divides_f2 /= f1;
EXPECT_PRED2(RationalFunctionEqual, f1_divides_f2, f1_divides_f2_expected);
// p5, p6 contains variable a in its indeterminates.
const RationalFunction f3(p1_, p3_);
if (kDrakeAssertIsArmed) {
DRAKE_EXPECT_THROWS_MESSAGE(f3 / RationalFunction(p5_, p6_),
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(f3 / RationalFunction(p5_, p2_),
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(f3 / RationalFunction(p2_, p5_),
rational_function_indeterminates_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p6_) / f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p2_) / f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p2_, p5_) / f3,
rational_function_indeterminates_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p6_) /= f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p5_, p2_) /= f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p2_, p5_) /= f3,
rational_function_indeterminates_error_);
}
const RationalFunction p3_divides_f1_expected(p1_, p2_ * p3_);
EXPECT_PRED2(RationalFunctionEqual, f1 / p3_, p3_divides_f1_expected);
EXPECT_PRED2(RationalFunctionEqual, p3_ / f1, 1 / p3_divides_f1_expected);
RationalFunction p3_divides_f1 = f1;
p3_divides_f1 /= p3_;
EXPECT_PRED2(RationalFunctionEqual, p3_divides_f1, p3_divides_f1_expected);
if (kDrakeAssertIsArmed) {
DRAKE_EXPECT_THROWS_MESSAGE(f3 / p5_,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(p5_ / f3,
polynomial_invariant_error_);
DRAKE_EXPECT_THROWS_MESSAGE(RationalFunction(p3_, p1_) / p5_,
rational_function_indeterminates_error_);
}
const double c = 2;
const RationalFunction c_divides_f1_expected(p1_, p2_ * c);
EXPECT_PRED2(RationalFunctionEqual, f1 / c, c_divides_f1_expected);
EXPECT_PRED2(RationalFunctionEqual, c / f1, 1 / c_divides_f1_expected);
RationalFunction c_divides_f1 = f1;
c_divides_f1 /= c;
EXPECT_PRED2(RationalFunctionEqual, c_divides_f1, c_divides_f1_expected);
const std::string zero_divider_error{
"RationalFunction: operator/=: The divider is 0."};
DRAKE_EXPECT_THROWS_MESSAGE(f1 / 0, zero_divider_error);
DRAKE_EXPECT_THROWS_MESSAGE(f1 / polynomial_zero_,
zero_divider_error);
const RationalFunction polynomial_fraction_zero;
DRAKE_EXPECT_THROWS_MESSAGE(f1 / polynomial_fraction_zero,
zero_divider_error);
}
TEST_F(SymbolicRationalFunctionTest, Exponentiation) {
const RationalFunction f(p1_, p2_);
EXPECT_PRED2(RationalFunctionEqual, pow(f, 0),
RationalFunction(polynomial_one_, polynomial_one_));
EXPECT_PRED2(RationalFunctionEqual, pow(f, 1), f);
EXPECT_PRED2(RationalFunctionEqual, pow(f, 2),
RationalFunction(pow(p1_, 2), pow(p2_, 2)));
EXPECT_PRED2(RationalFunctionEqual, pow(f, -1), RationalFunction(p2_, p1_));
EXPECT_PRED2(RationalFunctionEqual, pow(f, -2),
RationalFunction(pow(p2_, 2), pow(p1_, 2)));
}
TEST_F(SymbolicRationalFunctionTest, ProductAndAddition) {
// Test f1 * f2 + f3 * f4 where f's are all rational functions. This
// prouduct-and-addition operation is used in matrix product.
const RationalFunction f1(p1_, p2_);
const RationalFunction f2(p3_, p4_);
const RationalFunction f3(p2_, p4_);
const RationalFunction f4(p3_, p1_);
// (p1 / p2) * (p3 / p4) + (p2 / p4) + (p3 / p1) = (p1*p1*p3*p4 +
// p2*p2*p3*p4)/(p1*p2*p4*p4)
const RationalFunction result = f1 * f2 + f3 * f4;
const RationalFunction result_expected(
p1_ * p1_ * p3_ * p4_ + p2_ * p2_ * p3_ * p4_, p1_ * p2_ * p4_ * p4_);
EXPECT_PRED2(test::PolyEqualAfterExpansion, result.numerator(),
result_expected.numerator());
EXPECT_PRED2(test::PolyEqualAfterExpansion, result.denominator(),
result_expected.denominator());
}
} // namespace
} // namespace symbolic
} // namespace drake