forked from sammy-tri/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrigid_transform.h
670 lines (610 loc) · 33.2 KB
/
rigid_transform.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
#pragma once
#include <limits>
#include <fmt/format.h>
#include "drake/common/default_scalars.h"
#include "drake/common/drake_assert.h"
#include "drake/common/drake_bool.h"
#include "drake/common/drake_copyable.h"
#include "drake/common/eigen_types.h"
#include "drake/common/never_destroyed.h"
#include "drake/math/rotation_matrix.h"
namespace drake {
namespace math {
/// This class represents a proper rigid transform between two frames which can
/// be regarded in two ways. A rigid transform describes the "pose" between two
/// frames A and B (i.e., the relative orientation and position of A to B).
/// Alternately, it can be regarded as a distance-preserving operator that can
/// rotate and/or translate a rigid body without changing its shape or size
/// (rigid) and without mirroring/reflecting the body (proper), e.g., it can add
/// one position vector to another and express the result in a particular basis
/// as `p_AoQ_A = X_AB * p_BoQ_B` (Q is any point). In many ways, this rigid
/// transform class is conceptually similar to using a homogeneous matrix as a
/// linear operator. See operator* documentation for an exception.
///
/// The class stores a RotationMatrix that relates right-handed orthogonal
/// unit vectors Ax, Ay, Az fixed in frame A to right-handed orthogonal
/// unit vectors Bx, By, Bz fixed in frame B.
/// The class also stores a position vector from Ao (the origin of frame A) to
/// Bo (the origin of frame B). The position vector is expressed in frame A.
/// The monogram notation for the transform relating frame A to B is `X_AB`.
/// The monogram notation for the rotation matrix relating A to B is `R_AB`.
/// The monogram notation for the position vector from Ao to Bo is `p_AoBo_A`.
/// See @ref multibody_quantities for monogram notation for dynamics.
///
/// @note This class does not store the frames associated with the transform and
/// cannot enforce correct usage of this class. For example, it makes sense to
/// multiply %RigidTransforms as `X_AB * X_BC`, but not `X_AB * X_CB`.
///
/// @note This class is not a 4x4 transformation matrix -- even though its
/// operator*() methods act mostly like 4x4 matrix multiplication. Instead,
/// this class contains a 3x3 rotation matrix class and a 3x1 position vector.
/// To convert this to a 3x4 matrix, use GetAsMatrix34().
/// To convert this to a 4x4 matrix, use GetAsMatrix4().
/// To convert this to an Eigen::Isometry, use GetAsIsometry().
///
/// @note An isometry is sometimes regarded as synonymous with rigid transform.
/// The %RigidTransform class has important advantages over Eigen::Isometry.
/// - %RigidTransform is built on an underlying rigorous 3x3 RotationMatrix
/// class that has significant functionality for 3D orientation.
/// - In Debug builds, %RigidTransform requires a valid 3x3 rotation matrix
/// and a valid (non-NAN) position vector. Eigen::Isometry does not.
/// - %RigidTransform catches bugs that are undetected by Eigen::Isometry.
/// - %RigidTransform has additional functionality and ease-of-use,
/// resulting in shorter, easier to write, and easier to read code.
/// - The name Isometry is unfamiliar to many roboticists and dynamicists and
/// for them Isometry.linear() is (for example) a counter-intuitive method
/// name to return a rotation matrix.
///
/// @note One of the constructors in this class provides an implicit conversion
/// from an Eigen Translation to %RigidTransform.
///
/// @authors Paul Mitiguy (2018) Original author.
/// @authors Drake team (see https://drake.mit.edu/credits).
///
/// @tparam_default_scalar
template <typename T>
class RigidTransform {
public:
DRAKE_DEFAULT_COPY_AND_MOVE_AND_ASSIGN(RigidTransform)
/// Constructs the %RigidTransform that corresponds to aligning the two frames
/// so unit vectors Ax = Bx, Ay = By, Az = Bz and point Ao is coincident with
/// Bo. Hence, the constructed %RigidTransform contains an identity
/// RotationMatrix and a zero position vector.
RigidTransform() {
// @internal The default RotationMatrix constructor is an identity matrix.
set_translation(Vector3<T>::Zero());
}
/// Constructs a %RigidTransform from a rotation matrix and a position vector.
/// @param[in] R rotation matrix relating frames A and B (e.g., `R_AB`).
/// @param[in] p position vector from frame A's origin to frame B's origin,
/// expressed in frame A. In monogram notation p is denoted `p_AoBo_A`.
RigidTransform(const RotationMatrix<T>& R, const Vector3<T>& p) { set(R, p); }
/// Constructs a %RigidTransform from a RollPitchYaw and a position vector.
/// @param[in] rpy a %RollPitchYaw which is a Space-fixed (extrinsic) X-Y-Z
/// rotation with "roll-pitch-yaw" angles `[r, p, y]` or equivalently a Body-
/// fixed (intrinsic) Z-Y-X rotation with "yaw-pitch-roll" angles `[y, p, r]`.
/// @see RotationMatrix::RotationMatrix(const RollPitchYaw<T>&)
/// @param[in] p position vector from frame A's origin to frame B's origin,
/// expressed in frame A. In monogram notation p is denoted `p_AoBo_A`.
RigidTransform(const RollPitchYaw<T>& rpy, const Vector3<T>& p)
: RigidTransform(RotationMatrix<T>(rpy), p) {}
/// Constructs a %RigidTransform from a Quaternion and a position vector.
/// @param[in] quaternion a non-zero, finite quaternion which may or may not
/// have unit length [i.e., `quaternion.norm()` does not have to be 1].
/// @param[in] p position vector from frame A's origin to frame B's origin,
/// expressed in frame A. In monogram notation p is denoted `p_AoBo_A`.
/// @throws std::exception in debug builds if the rotation matrix
/// that is built from `quaternion` is invalid.
/// @see RotationMatrix::RotationMatrix(const Eigen::Quaternion<T>&)
RigidTransform(const Eigen::Quaternion<T>& quaternion, const Vector3<T>& p)
: RigidTransform(RotationMatrix<T>(quaternion), p) {}
/// Constructs a %RigidTransform from an AngleAxis and a position vector.
/// @param[in] theta_lambda an Eigen::AngleAxis whose associated axis (vector
/// direction herein called `lambda`) is non-zero and finite, but which may or
/// may not have unit length [i.e., `lambda.norm()` does not have to be 1].
/// @param[in] p position vector from frame A's origin to frame B's origin,
/// expressed in frame A. In monogram notation p is denoted `p_AoBo_A
/// @throws std::exception in debug builds if the rotation matrix
/// that is built from `theta_lambda` is invalid.
/// @see RotationMatrix::RotationMatrix(const Eigen::AngleAxis<T>&)
RigidTransform(const Eigen::AngleAxis<T>& theta_lambda, const Vector3<T>& p)
: RigidTransform(RotationMatrix<T>(theta_lambda), p) {}
/// Constructs a %RigidTransform with a given RotationMatrix and a zero
/// position vector.
/// @param[in] R rotation matrix relating frames A and B (e.g., `R_AB`).
explicit RigidTransform(const RotationMatrix<T>& R) {
set(R, Vector3<T>::Zero());
}
/// Constructs a %RigidTransform that contains an identity RotationMatrix and
/// a given position vector `p`.
/// @param[in] p position vector from frame A's origin to frame B's origin,
/// expressed in frame A. In monogram notation p is denoted `p_AoBo_A`.
explicit RigidTransform(const Vector3<T>& p) { set_translation(p); }
/// Constructs a %RigidTransform that contains an identity RotationMatrix and
/// the position vector underlying the given `translation`.
/// @param[in] translation translation-only transform that stores p_AoQ_A, the
/// position vector from frame A's origin to a point Q, expressed in frame A.
/// @note The constructed %RigidTransform `X_AAq` relates frame A to a frame
/// Aq whose basis unit vectors are aligned with Ax, Ay, Az and whose origin
/// position is located at point Q.
/// @note This constructor provides an implicit conversion from Translation to
/// %RigidTransform.
RigidTransform( // NOLINT(runtime/explicit)
const Eigen::Translation<T, 3>& translation) {
set_translation(translation.translation());
}
/// Constructs a %RigidTransform from an Eigen Isometry3.
/// @param[in] pose Isometry3 that contains an allegedly valid rotation matrix
/// `R_AB` and also contains a position vector `p_AoBo_A` from frame A's
/// origin to frame B's origin. `p_AoBo_A` must be expressed in frame A.
/// @throws std::exception in debug builds if R_AB is not a proper
/// orthonormal 3x3 rotation matrix.
/// @note No attempt is made to orthogonalize the 3x3 rotation matrix part of
/// `pose`. As needed, use RotationMatrix::ProjectToRotationMatrix().
explicit RigidTransform(const Isometry3<T>& pose) { SetFromIsometry3(pose); }
/// Constructs a %RigidTransform from a 3x4 matrix whose structure is below.
/// @param[in] pose 3x4 matrix that contains an allegedly valid 3x3 rotation
/// matrix `R_AB` and also a 3x1 position vector `p_AoBo_A` (the position
/// vector from frame A's origin to frame B's origin, expressed in frame A).
/// <pre>
/// ┌ ┐
/// │ R_AB p_AoBo_A │
/// └ ┘
/// </pre>
/// @throws std::exception in debug builds if the `R_AB` part of `pose` is
/// not a proper orthonormal 3x3 rotation matrix.
/// @note No attempt is made to orthogonalize the 3x3 rotation matrix part of
/// `pose`. As needed, use RotationMatrix::ProjectToRotationMatrix().
/// @exclude_from_pydrake_mkdoc{This overload is not bound in pydrake.}
explicit RigidTransform(const Eigen::Matrix<T, 3, 4> pose) {
set_rotation(RotationMatrix<T>(pose.template block<3, 3>(0, 0)));
set_translation(pose.template block<3, 1>(0, 3));
}
/// Constructs a %RigidTransform from a 4x4 matrix whose structure is below.
/// @param[in] pose 4x4 matrix that contains an allegedly valid 3x3 rotation
/// matrix `R_AB` and also a 3x1 position vector `p_AoBo_A` (the position
/// vector from frame A's origin to frame B's origin, expressed in frame A).
/// <pre>
/// ┌ ┐
/// │ R_AB p_AoBo_A │
/// │ │
/// │ 0 1 │
/// └ ┘
/// </pre>
/// @throws std::exception in debug builds if the `R_AB` part of `pose`
/// is not a proper orthonormal 3x3 rotation matrix or if `pose` is a 4x4
/// matrix whose final row is not `[0, 0, 0, 1]`.
/// @note No attempt is made to orthogonalize the 3x3 rotation matrix part of
/// `pose`. As needed, use RotationMatrix::ProjectToRotationMatrix().
/// @exclude_from_pydrake_mkdoc{This overload is not bound in pydrake.}
explicit RigidTransform(const Matrix4<T>& pose) {
DRAKE_ASSERT_VOID(ThrowIfInvalidBottomRow(pose));
set_rotation(RotationMatrix<T>(pose.template block<3, 3>(0, 0)));
set_translation(pose.template block<3, 1>(0, 3));
}
/// Constructs a %RigidTransform from an appropriate Eigen <b>expression</b>.
/// @param[in] pose Generic Eigen matrix <b>expression</b>.
/// @throws std::exception if the Eigen <b>expression</b> in pose does not
/// resolve to a Vector3 or 3x4 matrix or 4x4 matrix or if the rotational part
/// of `pose` is not a proper orthonormal 3x3 rotation matrix or if `pose` is
/// a 4x4 matrix whose final row is not `[0, 0, 0, 1]`.
/// @note No attempt is made to orthogonalize the 3x3 rotation matrix part of
/// `pose`. As needed, use RotationMatrix::ProjectToRotationMatrix().
/// @note This constructor prevents ambiguity that would otherwise exist for a
/// %RigidTransform constructor whose argument is an Eigen <b>expression</b>.
/// @code{.cc}
/// const Vector3<double> position(4, 5, 6);
/// const RigidTransform<double> X1(3 * position);
/// ----------------------------------------------
/// const RotationMatrix<double> R(RollPitchYaw<double>(1, 2, 3));
/// Eigen::Matrix<double, 3, 4> pose34;
/// pose34 << R.matrix(), position;
/// const RigidTransform<double> X2(1.0 * pose34);
/// ----------------------------------------------
/// Eigen::Matrix<double, 4, 4> pose4;
/// pose4 << R.matrix(), position,
/// 0, 0, 0, 1;
/// const RigidTransform<double> X3(pose4 * pose4);
/// @endcode
template <typename Derived>
explicit RigidTransform(const Eigen::MatrixBase<Derived>& pose) {
// TODO(Mitiguy) Consider C++ 17 if(constexpr) to specialize for each type.
const int num_rows = pose.rows(), num_cols = pose.cols();
if (num_rows == 3 && num_cols == 1) {
// The next line cannot use set_translation(pose.cols(0)) since this
// templated class must compile for 4x4 matrices. If pose is a 4x4 matrix
// pose.cols(0) would be a 4x1 matrix --which would cause a compiler
// error since set_translation() requires a 3x1 matrix.
// Hence, the block method below must be used as it avoids Eigen static
// assertions that would otherwise cause a compiler error. In runtime,
// the line below is executed only if pose is actually a 3x1 matrix.
set_translation(pose.template block<3, 1>(0, 0));
} else if (num_rows == 3 && num_cols == 4) {
set_rotation(RotationMatrix<T>(pose.template block<3, 3>(0, 0)));
set_translation(pose.template block<3, 1>(0, 3));
} else if (num_rows == 4 && num_cols == 4) {
DRAKE_ASSERT_VOID(ThrowIfInvalidBottomRow(pose));
set_rotation(RotationMatrix<T>(pose.template block<3, 3>(0, 0)));
set_translation(pose.template block<3, 1>(0, 3));
} else {
throw std::logic_error("Error: RigidTransform constructor argument is "
"not an Eigen expression that can resolve to"
"a Vector3 or 3x4 matrix or 4x4 matrix.");
}
}
/// Sets `this` %RigidTransform from a RotationMatrix and a position vector.
/// @param[in] R rotation matrix relating frames A and B (e.g., `R_AB`).
/// @param[in] p position vector from frame A's origin to frame B's origin,
/// expressed in frame A. In monogram notation p is denoted `p_AoBo_A`.
void set(const RotationMatrix<T>& R, const Vector3<T>& p) {
set_rotation(R);
set_translation(p);
}
/// Sets `this` %RigidTransform from an Eigen Isometry3.
/// @param[in] pose Isometry3 that contains an allegedly valid rotation matrix
/// `R_AB` and also contains a position vector `p_AoBo_A` from frame A's
/// origin to frame B's origin. `p_AoBo_A` must be expressed in frame A.
/// @throws std::exception in debug builds if R_AB is not a proper
/// orthonormal 3x3 rotation matrix.
/// @note No attempt is made to orthogonalize the 3x3 rotation matrix part of
/// `pose`. As needed, use RotationMatrix::ProjectToRotationMatrix().
void SetFromIsometry3(const Isometry3<T>& pose) {
set(RotationMatrix<T>(pose.linear()), pose.translation());
}
/// Creates a %RigidTransform templatized on a scalar type U from a
/// %RigidTransform templatized on scalar type T. For example,
/// ```
/// RigidTransform<double> source = RigidTransform<double>::Identity();
/// RigidTransform<AutoDiffXd> foo = source.cast<AutoDiffXd>();
/// ```
/// @tparam U Scalar type on which the returned %RigidTransform is templated.
/// @note `RigidTransform<From>::cast<To>()` creates a new
/// `RigidTransform<To>` from a `RigidTransform<From>` but only if type `To`
/// is constructible from type `From`. This cast method works in accordance
/// with Eigen's cast method for Eigen's objects that underlie this
/// %RigidTransform. For example, Eigen currently allows cast from type
/// double to AutoDiffXd, but not vice-versa.
template <typename U>
RigidTransform<U> cast() const {
const RotationMatrix<U> R = R_AB_.template cast<U>();
const Vector3<U> p = p_AoBo_A_.template cast<U>();
return RigidTransform<U>(R, p);
}
/// Returns the identity %RigidTransform (corresponds to coincident frames).
/// @return the %RigidTransform that corresponds to aligning the two frames so
/// unit vectors Ax = Bx, Ay = By, Az = Bz and point Ao is coincident with Bo.
/// Hence, the returned %RigidTransform contains a 3x3 identity matrix and a
/// zero position vector.
static const RigidTransform<T>& Identity() {
// @internal This method's name was chosen to mimic Eigen's Identity().
static const never_destroyed<RigidTransform<T>> kIdentity;
return kIdentity.access();
}
/// Returns R_AB, the rotation matrix portion of `this` %RigidTransform.
/// @retval R_AB the rotation matrix portion of `this` %RigidTransform.
const RotationMatrix<T>& rotation() const { return R_AB_; }
/// Sets the %RotationMatrix portion of `this` %RigidTransform.
/// @param[in] R rotation matrix relating frames A and B (e.g., `R_AB`).
void set_rotation(const RotationMatrix<T>& R) { R_AB_ = R; }
/// Sets the rotation part of `this` %RigidTransform from a RollPitchYaw.
/// @param[in] rpy "roll-pitch-yaw" angles.
/// @see RotationMatrix::RotationMatrix(const RollPitchYaw<T>&) which
/// describes the parameter, preconditions, etc.
void set_rotation(const RollPitchYaw<T>& rpy) {
set_rotation(RotationMatrix<T>(rpy));
}
/// Sets the rotation part of `this` %RigidTransform from a Quaternion.
/// @param[in] quaternion a quaternion which may or may not have unit length.
/// @see RotationMatrix::RotationMatrix(const Eigen::Quaternion<T>&) which
/// describes the parameter, preconditions, exception conditions, etc.
void set_rotation(const Eigen::Quaternion<T>& quaternion) {
set_rotation(RotationMatrix<T>(quaternion));
}
/// Sets the rotation part of `this` %RigidTransform from an AngleAxis.
/// @param[in] theta_lambda an angle `theta` (in radians) and vector `lambda`.
/// @see RotationMatrix::RotationMatrix(const Eigen::AngleAxis<T>&) which
/// describes the parameter, preconditions, exception conditions, etc.
void set_rotation(const Eigen::AngleAxis<T>& theta_lambda) {
set_rotation(RotationMatrix<T>(theta_lambda));
}
/// Returns `p_AoBo_A`, the position vector portion of `this` %RigidTransform,
/// i.e., position vector from Ao (frame A's origin) to Bo (frame B's origin).
const Vector3<T>& translation() const { return p_AoBo_A_; }
/// Sets the position vector portion of `this` %RigidTransform.
/// @param[in] p position vector from Ao (frame A's origin) to Bo (frame B's
/// origin) expressed in frame A. In monogram notation p is denoted p_AoBo_A.
void set_translation(const Vector3<T>& p) { p_AoBo_A_ = p; }
/// Returns the 4x4 matrix associated with this %RigidTransform, i.e., X_AB.
/// <pre>
/// ┌ ┐
/// │ R_AB p_AoBo_A │
/// │ │
/// │ 0 1 │
/// └ ┘
/// </pre>
Matrix4<T> GetAsMatrix4() const {
Matrix4<T> pose;
pose.template topLeftCorner<3, 3>() = rotation().matrix();
pose.template topRightCorner<3, 1>() = translation();
pose.row(3) = Vector4<T>(0, 0, 0, 1);
return pose;
}
/// Returns the 3x4 matrix associated with this %RigidTransform, i.e., X_AB.
/// <pre>
/// ┌ ┐
/// │ R_AB p_AoBo_A │
/// └ ┘
/// </pre>
Eigen::Matrix<T, 3, 4> GetAsMatrix34() const {
Eigen::Matrix<T, 3, 4> pose;
pose.template topLeftCorner<3, 3>() = rotation().matrix();
pose.template topRightCorner<3, 1>() = translation();
return pose;
}
/// Returns the isometry in ℜ³ that is equivalent to a %RigidTransform.
Isometry3<T> GetAsIsometry3() const {
// pose.linear() returns a mutable reference to the 3x3 rotation matrix part
// of Isometry3 and pose.translation() returns a mutable reference to the
// 3x1 position vector part of the Isometry3.
Isometry3<T> pose;
pose.linear() = rotation().matrix();
pose.translation() = translation();
pose.makeAffine();
return pose;
}
/// Sets `this` %RigidTransform so it corresponds to aligning the two frames
/// so unit vectors Ax = Bx, Ay = By, Az = Bz and point Ao is coincident with
/// Bo. Hence, `this` %RigidTransform contains a 3x3 identity matrix and a
/// zero position vector.
const RigidTransform<T>& SetIdentity() {
set(RotationMatrix<T>::Identity(), Vector3<T>::Zero());
return *this;
}
/// Returns `true` if `this` is exactly the identity %RigidTransform.
/// @see IsIdentityToEpsilon().
boolean<T> IsExactlyIdentity() const {
const boolean<T> is_position_zero = (translation() == Vector3<T>::Zero());
return is_position_zero && rotation().IsExactlyIdentity();
}
/// Return true if `this` is within tolerance of the identity %RigidTransform.
/// @returns `true` if the RotationMatrix portion of `this` satisfies
/// RotationMatrix::IsIdentityToInternalTolerance() and if the position vector
/// portion of `this` is equal to zero vector within `translation_tolerance`.
/// @param[in] translation_tolerance a non-negative number. One way to choose
/// `translation_tolerance` is to multiply a characteristic length
/// (e.g., the magnitude of a characteristic position vector) by an epsilon
/// (e.g., RotationMatrix::get_internal_tolerance_for_orthonormality()).
/// @see IsExactlyIdentity().
boolean<T> IsIdentityToEpsilon(double translation_tolerance) const {
const T max_component = translation().template lpNorm<Eigen::Infinity>();
return max_component <= translation_tolerance &&
rotation().IsIdentityToInternalTolerance();
}
/// Returns X_BA = X_AB⁻¹, the inverse of `this` %RigidTransform.
/// @note The inverse of %RigidTransform X_AB is X_BA, which contains the
/// rotation matrix R_BA = R_AB⁻¹ = R_ABᵀ and the position vector `p_BoAo_B_`
/// (position from B's origin Bo to A's origin Ao, expressed in frame B).
/// @note: The square-root of a %RigidTransform's condition number is roughly
/// the magnitude of the position vector. The accuracy of the calculation for
/// the inverse of a %RigidTransform drops off with the sqrt condition number.
RigidTransform<T> inverse() const {
// @internal This method's name was chosen to mimic Eigen's inverse().
const RotationMatrix<T> R_BA = R_AB_.inverse();
return RigidTransform<T>(R_BA, R_BA * (-p_AoBo_A_));
}
/// In-place multiply of `this` %RigidTransform `X_AB` by `other`
/// %RigidTransform `X_BC`.
/// @param[in] other %RigidTransform that post-multiplies `this`.
/// @returns `this` %RigidTransform which has been multiplied by `other`.
/// On return, `this = X_AC`, where `X_AC = X_AB * X_BC`.
RigidTransform<T>& operator*=(const RigidTransform<T>& other) {
if constexpr (std::is_same_v<T, double>) {
internal::ComposeXX(*this, other, this);
} else {
p_AoBo_A_ = *this * other.translation();
R_AB_ *= other.rotation();
}
return *this;
}
/// Multiplies `this` %RigidTransform `X_AB` by the `other` %RigidTransform
/// `X_BC` and returns the %RigidTransform `X_AC = X_AB * X_BC`.
RigidTransform<T> operator*(const RigidTransform<T>& other) const {
RigidTransform<T> X_AC(internal::DoNotInitializeMemberFields{});
if constexpr (std::is_same_v<T, double>) {
internal::ComposeXX(*this, other, &X_AC);
} else {
X_AC.set(rotation() * other.rotation(), *this * other.translation());
}
return X_AC;
}
/// Calculates the product of `this` inverted and another %RigidTransform.
/// If you consider `this` to be the transform X_AB, and `other` to be
/// X_AC, then this method returns X_BC = X_AB⁻¹ * X_AC. For T==double, this
/// method can be _much_ faster than inverting first and then performing the
/// composition, because it can take advantage of the special structure of
/// a rigid transform to avoid unnecessary memory and floating point
/// operations. On some platforms it can use SIMD instructions for further
/// speedups.
/// @param[in] other %RigidTransform that post-multiplies `this` inverted.
/// @retval X_BC where X_BC = this⁻¹ * other.
/// @note It is possible (albeit improbable) to create an invalid rigid
/// transform by accumulating round-off error with a large number of
/// multiplies.
RigidTransform<T> InvertAndCompose(const RigidTransform<T>& other) const {
const RigidTransform<T>& X_AC = other; // Nicer name.
RigidTransform<T> X_BC(internal::DoNotInitializeMemberFields{});
if constexpr (std::is_same_v<T, double>) {
internal::ComposeXinvX(*this, X_AC, &X_BC);
} else {
const RigidTransform<T> X_BA = inverse();
X_BC = X_BA * X_AC;
}
return X_BC;
}
/// Multiplies `this` %RigidTransform `X_AB` by the translation-only transform
/// `X_BBq` and returns the %RigidTransform `X_ABq = X_AB * X_BBq`.
/// @note The rotation matrix in the returned %RigidTransform `X_ABq` is equal
/// to the rotation matrix in `X_AB`. `X_ABq` and `X_AB` only differ by
/// origin location.
RigidTransform<T> operator*(const Eigen::Translation<T, 3>& X_BBq) const {
const RigidTransform<T>& X_AB = *this;
const Vector3<T> p_ABq_A = X_AB * X_BBq.translation();
return RigidTransform<T>(rotation(), p_ABq_A);
}
/// Multiplies the translation-only transform `X_AAq` by the %RigidTransform
/// `X_AqB` and returns the %RigidTransform `X_AB = X_AAq * X_AqB`.
/// @note The rotation matrix in the returned %RigidTransform `X_AB` is equal
/// to the rotation matrix in `X_AqB`. `X_AB` and `X_AqB` only differ by
/// origin location.
friend RigidTransform<T> operator*(const Eigen::Translation<T, 3>& X_AAq,
const RigidTransform<T>& X_AqB) {
const Vector3<T>& p_AAq_A = X_AAq.translation();
const Vector3<T>& p_AqB_A = X_AqB.translation();
const Vector3<T>& p_AB_A = p_AAq_A + p_AqB_A;
const RotationMatrix<T>& R_AB = X_AqB.rotation();
return RigidTransform<T>(R_AB, p_AB_A);
}
/// Multiplies `this` %RigidTransform `X_AB` by the position vector
/// `p_BoQ_B` which is from Bo (B's origin) to an arbitrary point Q.
/// @param[in] p_BoQ_B position vector from Bo to Q, expressed in frame B.
/// @retval p_AoQ_A position vector from Ao to Q, expressed in frame A.
Vector3<T> operator*(const Vector3<T>& p_BoQ_B) const {
return p_AoBo_A_ + R_AB_ * p_BoQ_B;
}
/// Multiplies `this` %RigidTransform `X_AB` by the n position vectors
/// `p_BoQ1_B` ... `p_BoQn_B`, where `p_BoQi_B` is the iᵗʰ position vector
/// from Bo (frame B's origin) to an arbitrary point Qi, expressed in frame B.
/// @param[in] p_BoQ_B `3 x n` matrix with n position vectors `p_BoQi_B` or
/// an expression that resolves to a `3 x n` matrix of position vectors.
/// @retval p_AoQ_A `3 x n` matrix with n position vectors `p_AoQi_A`, i.e., n
/// position vectors from Ao (frame A's origin) to Qi, expressed in frame A.
/// Specifically, this operator* is defined so that `X_AB * p_BoQ_B` returns
/// `p_AoQ_A = p_AoBo_A + R_AB * p_BoQ_B`, where
/// `p_AoBo_A` is the position vector from Ao to Bo expressed in A and
/// `R_AB` is the rotation matrix relating the orientation of frames A and B.
/// @note As needed, use parentheses. This operator* is not associative.
/// To see this, let `p = p_AoBo_A`, `q = p_BoQ_B` and note
/// (X_AB * q) * 7 = (p + R_AB * q) * 7 ≠ X_AB * (q * 7) = p + R_AB * (q * 7).
/// @code{.cc}
/// const RollPitchYaw<double> rpy(0.1, 0.2, 0.3);
/// const RigidTransform<double> X_AB(rpy, Vector3d(1, 2, 3));
/// Eigen::Matrix<double, 3, 2> p_BoQ_B;
/// p_BoQ_B.col(0) = Vector3d(4, 5, 6);
/// p_BoQ_B.col(1) = Vector3d(9, 8, 7);
/// const Eigen::Matrix<double, 3, 2> p_AoQ_A = X_AB * p_BoQ_B;
/// @endcode
template <typename Derived>
Eigen::Matrix<typename Derived::Scalar, 3, Derived::ColsAtCompileTime>
operator*(const Eigen::MatrixBase<Derived>& p_BoQ_B) const {
if (p_BoQ_B.rows() != 3) {
throw std::logic_error(
"Error: Inner dimension for matrix multiplication is not 3.");
}
// Express position vectors in terms of frame A as p_BoQ_A = R_AB * p_BoQ_B.
const RotationMatrix<typename Derived::Scalar> &R_AB = rotation();
const Eigen::Matrix<typename Derived::Scalar, 3, Derived::ColsAtCompileTime>
p_BoQ_A = R_AB * p_BoQ_B;
// Reserve space (on stack or heap) to store the result.
const int number_of_position_vectors = p_BoQ_B.cols();
Eigen::Matrix<typename Derived::Scalar, 3, Derived::ColsAtCompileTime>
p_AoQ_A(3, number_of_position_vectors);
// Create each returned position vector as p_AoQi_A = p_AoBo_A + p_BoQi_A.
for (int i = 0; i < number_of_position_vectors; ++i)
p_AoQ_A.col(i) = translation() + p_BoQ_A.col(i);
return p_AoQ_A;
}
/// Compares each element of `this` to the corresponding element of `other`
/// to check if they are the same to within a specified `tolerance`.
/// @param[in] other %RigidTransform to compare to `this`.
/// @param[in] tolerance maximum allowable absolute difference between the
/// elements in `this` and `other`.
/// @returns `true` if `‖this.matrix() - other.matrix()‖∞ <= tolerance`.
/// @note Consider scaling tolerance with the largest of magA and magB, where
/// magA and magB denoted the magnitudes of `this` position vector and `other`
/// position vectors, respectively.
boolean<T> IsNearlyEqualTo(const RigidTransform<T>& other,
double tolerance) const {
return GetMaximumAbsoluteDifference(other) <= tolerance;
}
/// Returns true if `this` is exactly equal to `other`.
/// @param[in] other %RigidTransform to compare to `this`.
/// @returns `true` if each element of `this` is exactly equal to the
/// corresponding element of `other`.
boolean<T> IsExactlyEqualTo(const RigidTransform<T>& other) const {
return rotation().IsExactlyEqualTo(other.rotation()) &&
translation() == other.translation();
}
/// Computes the infinity norm of `this` - `other` (i.e., the maximum absolute
/// value of the difference between the elements of `this` and `other`).
/// @param[in] other %RigidTransform to subtract from `this`.
/// @returns ‖`this` - `other`‖∞
T GetMaximumAbsoluteDifference(const RigidTransform<T>& other) const {
const Eigen::Matrix<T, 3, 4> diff = GetAsMatrix34() - other.GetAsMatrix34();
return diff.template lpNorm<Eigen::Infinity>();
}
/// Returns the maximum absolute value of the difference in the position
/// vectors (translation) in `this` and `other`. In other words, returns
/// the infinity norm of the difference in the position vectors.
/// @param[in] other %RigidTransform whose position vector is subtracted from
/// the position vector in `this`.
T GetMaximumAbsoluteTranslationDifference(
const RigidTransform<T>& other) const {
const Vector3<T> p_difference = translation() - other.translation();
return p_difference.template lpNorm<Eigen::Infinity>();
}
private:
// Make RigidTransform<U> templatized on any typename U be a friend of a
// %RigidTransform templatized on any other typename T. This is needed for the
// method RigidTransform<T>::cast<U>() to be able to use the required private
// constructor.
template <typename U>
friend class RigidTransform;
// Declares the allowable tolerance (small multiplier of double-precision
// epsilon) used to check whether or not a matrix is homogeneous.
static constexpr double kInternalToleranceForHomogeneousCheck{
4 * std::numeric_limits<double>::epsilon() };
// Constructs a RigidTransform without initializing the underlying 3x4 matrix.
explicit RigidTransform(internal::DoNotInitializeMemberFields)
: R_AB_{internal::DoNotInitializeMemberFields{}} {}
// Throw an exception if the bottom row of a 4x4 matrix is not [0, 0, 0, 1].
// Note: To allow this method to be used with other %RigidTransform methods
// that use Eigen <b>expressions</b> (as distinct from Eigen <b>types</b>)
// the `pose` argument is an Eigen::MatrixBase<Derived> (not a Matrix4 type).
template <typename Derived>
static void ThrowIfInvalidBottomRow(const Eigen::MatrixBase<Derived>& pose) {
const int num_rows = pose.rows(), num_cols = pose.cols();
DRAKE_DEMAND(num_rows == 4 && num_cols == 4);
if (pose(3, 0) != 0 || pose(3, 1) != 0 ||
pose(3, 2) != 0 || pose(3, 3) != 1) {
throw std::logic_error(fmt::format(
"Error: Bottom row of 4x4 matrix differs from [0, 0, 0, 1]"));
}
}
// Rotation matrix relating two frames, e.g. frame A and frame B.
// The default constructor for R_AB_ is an identity matrix.
RotationMatrix<T> R_AB_;
// Position vector from A's origin Ao to B's origin Bo, expressed in A.
Vector3<T> p_AoBo_A_;
};
// To enable low-level optimizations we insist that RigidTransform<double> is
// packed into 12 consecutive doubles, with a 3x3 RotationMatrix<double> in
// the first 9 doubles and a translation vector in the last 3 doubles.
// A unit test verifies this memory layout for a RigidTransform<double>.
// Note: The C++ standard guarantees that non-static members of a class appear
// in memory in the same order as they are declared. Implementation alignment
// requirements can cause an alignment gap in memory between adjacent members.
static_assert(sizeof(RigidTransform<double>) == 12 * sizeof(double),
"Low-level optimizations depend on RigidTransform<double> being "
"stored as 12 sequential doubles in memory.");
/// Stream insertion operator to write an instance of RigidTransform into a
/// `std::ostream`. Especially useful for debugging.
/// @relates RigidTransform.
template <typename T>
std::ostream& operator<<(std::ostream& out, const RigidTransform<T>& X);
/// Abbreviation (alias/typedef) for a RigidTransform double scalar type.
/// @relates RigidTransform
using RigidTransformd = RigidTransform<double>;
} // namespace math
} // namespace drake
DRAKE_DECLARE_CLASS_TEMPLATE_INSTANTIATIONS_ON_DEFAULT_SCALARS(
class ::drake::math::RigidTransform)